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e Theorem 3.7 (K&F): If G; and G, have the same v-structures and
the same undirected skeleton, then /(G1) = 1(G>)

@ Other direction does not apply! Why not?
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e Theorem 3.7 (K&F): If G; and G, have the same V-structures and
the same undirected skeleton, then /(G1) = 1(G>).

@ Other direction does not apply! Consider, for example, a complete

R v v

@ Def: A v-structure X — Z < Y is an immorality if there is no
directed edge between X and Y

o Theorem 3.8 (K&F): G; and G, are I-equivalent if and only if Gy
and G> have the same skeleton and the same set of immoralities.
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Pruning nodes in Bayesian networks

@ A node in a Bayesian network G is a leaf if it has no children.

o Def: A node is barren w.r.t. a query pg(X | Y =y) if it is a leaf and
it is not in XUY

Barren node
with respect to
Pr(X|Y= Y)

@ To remove a node v from a Bayesian network G = (V, E) means:

© Removing v from V, and removing from E all edges to/from v
@ Leave the CPDs for the rest of the variables the same

o Theorem: Let G’ be the Bayesian network obtained from G by
removing v. If v is barren w.r.t. the query pg(X | Y =y), then

pg(X Y =y)=pg(X|Y =y).
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Pruning nodes in Bayesian networks

Barren node
with respect to
Pr(X|Y=y)

NORRG

> hzPo(z,x,y,h)
Z)?,h,z pg(z,%,y,h)

> bz OxOn02x0y x

> z.hz 020002150, 15

D on O0x0n0y 5 h D2, 0z1x
> zn 020001583, 0215
= pg(X=x|Y=y),

where G’ is the Bayesian network with Z removed.

(X =x|Y=y) =
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Pruning nodes in Bayesian networks

o Def: A node is barren w.r.t. a query pg(X | Y =y) if it is a leaf and
it is not in XUY

Theorem: Let G’ be the Bayesian network obtained from G by
removing v. If v is barren w.r.t. the query pg(X | Y =y), then

pe(X|Y =y)=pg(X|Y =y).

Let An(X UY) be the ancestral set of XU'Y, i.e. the set including
X UY and all of their ancestors

e Corollary: All the nodes outside of An(X U Y) are irrelevant to the
query pg(X | Y =y) and can be removed

@ Theorem: Let G’ be the Bayesian network obtained from G by
removing all nodes that are d-separated from X by Y. Then

po(X Y =y)=pg(X|Y =y).
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Treewidth of grid graph?

@ What is the treewidth of a M x R node grid-structured MRF?

T
R

@ Choose smaller size, and eliminate variables on that side in any order
e Will only introduce edges along the next row (column)
@ Thus, treewidth is at most min(M, R)
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Midterm exam, etc.

Make sure you are on the course mailing list

No class next week, 10/14 (fall recess)

| will hold office hours 10/14 and there will be lab 10/16. Bring your
midterm-related questions!

Midterm exam in class on 10/21 (in 2 weeks). Closed book; no
calculators/phones/computers

Midterm covers everything up to and including this week’s lab (10/9)

PS4 released after midterm exam
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How to study for the midterm

© Go over slides and your notes from lecture & lab
@ Carefully go over required readings and the homeworks

© Do practice problems from the end of the Murphy chapters, e.g. all of
the questions for Chapters 10 and 20, and exercices 19.5 and 22.4

@ Experiment with structure learning code from 3rd lab:

& C' [} cs.nyu.edu/~jernite/irl4/

Inference and Representation: Fall 2014

You will find lab notes posted here:
« First lab: Slides.

* Second lab: Slides, Ising Code, POS tagging code.

+ Third lab: Slides, Pebl Code, P: d cars data(from the UCI itory).

« Fourth lab: Slides. ™~
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Today's lecture

© |Integer linear programming
@ MAP inference as an integer linear program
© Linear programming relaxations for MAP inference

© Dual decomposition
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MAP i ce

@ Recall the MAP inference task,
1
argmaxp(x),  p(x) = 5 [] delxe)
ceC

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

@ Since the normalization term is simply a constant, this is equivalent to
arg max H dc(xc)
ceC
(called the max-product inference task)

@ Furthermore, since log is monotonic, letting .(xc) = Ig ¢c(xc), we have that
this is equivalent to

arg max Z 0c(xc)

ceC

(called max-sum)
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Motivating application: protein side-chain placem

@ Find “minimum energy” conformation of amino acid side-chains along
a fixed carbon backbone:

(Yanover, Meltzer, Weiss ‘06) “Potential” function

Side-chain X, X, e for each edge
(corresponding to _ < 9|3(X|, X3)
| amino acid) A elz(xl' XZ)
R
Protein backbone . e 034(x3 )

- X4

@ Orientations of the side-chains are represented by discretized angles
called rotamers

@ Rotamer choices for nearby amino acids are energetically coupled
(attractive and repulsive forces)
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Motivating application: dependency parsing

@ Given a sentence, predict the dependency tree that relates the words:

John saw a movie vesterday that he liked

@ Arc from head word of each phrase to words that modify it

@ May be non-projective: each word and its descendents may not be a
contiguous subsequence

e m words = m(m — 1) binary arc selection variables x;; € {0,1}

o Let x|; = {x;};»i (all outgoing edges). Predict with:

max0-r +Z€U Xijj +Zc9 x|
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

arg max Z 0:(x;) + Z i (xi, xj).
icv ij€eE
@ To turn this into an integer linear program, we introduce indicator variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then
msz D 000 mi0a) + Y > 05(xi, ) i (%, x;)

eV X jEE xi,X;

@ What is the dimension of u, if binary variables?
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What are the constraints?

@ Force every “cluster” of variables to choose a local assignment:
,u;(x,-) < {0, 1} VieV,x
Z,LL,'(X,’) =1 VieV
Xi
wij(Xi, x;) {0,1} Vij € E, xi,x;
Domilxixg) = 1 VijeE

X Xj

m

@ Enforce that these local assignments are globally consistent:

pi(x) = > pi(xi,x) Vi€ E,x;
Xj

nix) = > milxix) Vi€ Ex
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MAP as an integer linear program (ILP)

MAP(9) = mﬁxz Z 0:(xi )i (x;) + Z Z 0,i (i, x; ) i (i, xj)

IS ijeE Xi,X;
subject to:

i (x;) {0,1} VieV.x
> pilx) = 1 VieVv

Xi

m

pilx) = > milxi,x) Vi€ E,x

pig) = ZMU(Xiy)(j) Vij € E, x

@ Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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Linear programming relaxation for MAP

Integer linear program was:

MAP(0) = mfxz Z 0:(xi)wi(xi) + Z Z 05 (xi, x;) i (i, X;)

IS ijeE Xi,X;

subject to

x
~
m

" (0,1} Vie V,x
Z/,L,'(X,') = 1 VieV

pi(xi) = ZMU(X;,XJ-) Vij € E, x;
X
wilg) = > milxix) Vi€ E,x

Relax integrality constraints, allowing the variables to be between 0 and 1:

pi(xi) € [0,1] VieV,x
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Linear programming relaxation for MAP

Linear programming relaxation is:

LP(9) = max STST 0 mia) + D1 ST 0506, %) mi(xis %)

iev x; JEE Xj»X;

wilx) € [0,1] VieV,x
S = 1 viev
xi

wix;) > wilxisx) Vi € E,x;
o
j

wilg) = > wi(xisx) Vil € E,x
Xi

@ Linear programs can be solved efficiently! Simplex method, interior point,
ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher
MAP(0) < LP(6)

@ LP relaxation is tight for tree-structured MRFs
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Today's lecture

© |Integer linear programming
@ MAP inference as an integer linear program
© Linear programming relaxations for MAP inference

© Dual decomposition
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Dual decomposition

@ Consider the MAP problem for pairwise Markov random fields:

MAP(6) = max D 0i(xi)+ > 0;(xi, ).

iev ij€E

@ If we push the maximizations inside the sums, the value can only increase:

MAP(0) <) max 0;(x;) + > max 0;(x;, x;)
iev ijee
@ Note that the right-hand side can be easily evaluated
@ One can always reparameterize a distribution by operations like
07" (xi) 074 (x;) + (%)
05 (xi, ) = 6079(xi, %) — F(x)

for any function f(x;), without changing the distribution/energy
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Dual decomposition

0y(a1,72)

O
()()
Dy

Ox(3,24)
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Dual decomposition

@ Define:
Oi(x) = 0:i(x)+ Y djsi(x)
ijE€E
O(xix5) = 05(xi.%) = 8j-i(xi) = 0imsj()
@ It is easy to verify that

ZQ (xi) +Z€U (xi, %) Z@ X,)—i—ZG,J (xi,x;) Vx

ijeE ijeE

Thus, we have that:
MAP(0) = MAP(f) < Z max@ (x;) + Z max 8;(x;, x})

Xj,Xj
ieVv ijeE

Every value of § gives a different upper bound on the value of the MAP!

The tightest upper bound can be obtained by minimizing the r.h.s. with
respect to 4!
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Dual decomposition

@ We obtain the following dual objective: L(d) =

> max (9,-(x,-) +y 5j—>i(Xi)) + Z max (GU(Xh X)) = Ojilxi) — 6i—>j(Xj))7

iev ijcE

DUAL-LP(6) = min L(5)

@ This provides an upper bound on the MAP assignment!
MAP(f) < DUAL-LP(0) < L(6)

@ How can find § which give tight bounds?
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Solving the dual efficiently

@ Many ways to solve the dual linear program, i.e. minimize with respect to §:

>~ max (6:00) + Y bl )+Zmax (6506 %) = 8j+i(x) = Gi5(x) ),

eV iicE

@ One option is to use the subgradient method

@ Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation:

AL
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Max-product linear programming (MPLP) algorithm

Input: A set of factors 6;(x;), 0;(xi, x;)
Output: An assignment xi, ..., x, that approximates the MAP
Algorithm:

@ Initialize §;,j(x;) =0, 6&ji(x) =0, Vij€ E, x;,x

@ lterate until small enough change in L(6):

For each edge ij € E (sequentially), perform the updates:

1 __; 1 _i

disi(xi) = —551.J(x;)+§mx?x[0;j(x;,><j)—|—5j (XJ)] Vx;
1, 1 _

6iig) = =507 06) + 5 max [0505.9) + 0,7 (x)] ¥y

where 6;7(x;) = 0i(x;) + Y iker kzj Ok—i(xi)

@ Return x; € arg maxg, 62 (%;)
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Generalization to arbitrary factor graphs

Inputs:
= A set of factors 0;(z;), 05 (xy).

Output:

Algorithm:
B Initialize §7;i(z;) =0, Vf € F,i€ f, ;.

For each f € F, perform the updates

|71

® Return z; € arg maxz, 69 (2;) (see Eq. 1.6).

® An assignment x1,...,x, that approximates the MAP.

= [terate until small enough change in L(4) (see Eq. 1.2):

ief

Spa(ws) = =6, (w) + - max [0p(zs) + 36 () | (1.16)
TF\i

simultaneously for all i € f and x;. We define §; 7 (;) = 0;(x:) + PP FACHN
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Experimental results

Comparison of two block coordinate descent algorithms on a 10 x 10 node

Ising grid:
50
g
= =— MPLP
3 49 = Star
2
O
48
47+
46 ‘ ‘ ‘
0 10 20 30

lteration
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Experimental results

Performance on stereo vision inference task:
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Today's lecture

@ Dual decomposition
@ MARP inference as an integer linear program

© Linear programming relaxations for MAP inference
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Dual decomposition = LP relaxation

@ Recall we obtained the following dual linear program: L(J) =
> max (6:00) + 3 -i(x) ) + Z max (03¢ ) — 6ji() = 61j(9) ).
icv i IJEE is
DUAL-LP(H) = m5|n L(9)
@ We showed two ways of upper bounding the value of the MAP assignment:
MAP(9) < LP(9) (1)
MAP(A) < DUAL-LP(9) < L(9) 2)

@ Although we derived these linear programs in seemingly very different ways,

in turns out that:
LP(0) = DUAL-LP(0)

@ The dual LP allows us to upper bound the value of the MAP assignment
without solving a LP to optimality
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Linear programming duality

1, (Dual) LP relaxation
(Primal) LP relaxation
MAP assignment
XN 0 Integer linear program

MAP() < LP(6) = DUAL-LP(0) < L(5)
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How to solve integer linear programs?

@ Local search

o Start from an arbitrary assignment (e.g., random). lterate:
o Choose a variable. Change a new state for this variable to maximize
the value of the resulting assignment

@ Branch-and-bound

o Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment

e Can use the LP relaxation or its dual to obtain upper bounds

e Lower bound obtained from value of any assignment found

@ Branch-and-cut (most powerful method; used by CPLEX & Gurobi)

e Same as branch-and-bound; spend more time getting tighter bounds
e Adds cutting-planes to cut off fractional solutions of the LP relaxation,
making the upper bound tighter
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