
Inference and Representation

David Sontag

New York University

Lecture 6, Oct. 7, 2014

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 1 / 32

V-structures

Theorem 3.7 (K&F): If G1 and G2 have the same v-structures and
the same undirected skeleton, then I (G1) = I (G2)

W

V X

Y

Z

W

V X

Y

Z

Other direction does not apply! Why not?

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 2 / 32

V-structures

Theorem 3.7 (K&F): If G1 and G2 have the same V-structures and
the same undirected skeleton, then I (G1) = I (G2).

Other direction does not apply! Consider, for example, a complete
graph:

Def: A v-structure X → Z ← Y is an immorality if there is no
directed edge between X and Y

Theorem 3.8 (K&F): G1 and G2 are I -equivalent if and only if G1
and G2 have the same skeleton and the same set of immoralities.

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 3 / 32

Pruning nodes in Bayesian networks

A node in a Bayesian network G is a leaf if it has no children.

Def: A node is barren w.r.t. a query pG(X | Y = y) if it is a leaf and
it is not in X ∪ Y

X

Y

H

Z

Barren node
with respect to

Pr(X | Y=y)

To remove a node v from a Bayesian network G = (V ,E) means:
1 Removing v from V , and removing from E all edges to/from v
2 Leave the CPDs for the rest of the variables the same

Theorem: Let G′ be the Bayesian network obtained from G by
removing v . If v is barren w.r.t. the query pG(X | Y = y), then

pG(X | Y = y) = pG′(X | Y = y).

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 4 / 32

Pruning nodes in Bayesian networks

X

Y

H

Z

Barren node
with respect to

Pr(X | Y=y)

pG(X = x | Y = y) =

∑
h,z pG(z , x , y , h)∑
x̂ ,h,z pG(z , x̂ , y , h)

=

∑
h,z θxθhθz|xθy |x ,h∑
x̂ ,h,z θx̂θhθz|x̂θy |x̂ ,h

=

∑
h θxθhθy |x ,h

∑
z θz|x∑

x̂ ,h θx̂θhθy |x̂ ,h
∑

z θz|x̂
= pG′(X = x | Y = y),

where G′ is the Bayesian network with Z removed.

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 5 / 32

Pruning nodes in Bayesian networks

Def: A node is barren w.r.t. a query pG(X | Y = y) if it is a leaf and
it is not in X ∪ Y

Theorem: Let G′ be the Bayesian network obtained from G by
removing v . If v is barren w.r.t. the query pG(X | Y = y), then

pG(X | Y = y) = pG′(X | Y = y).

Let An(X ∪ Y) be the ancestral set of X ∪ Y, i.e. the set including
X ∪ Y and all of their ancestors

Corollary: All the nodes outside of An(X ∪ Y) are irrelevant to the
query pG(X | Y = y) and can be removed

Theorem: Let G′ be the Bayesian network obtained from G by
removing all nodes that are d-separated from X by Y . Then

pG(X | Y = y) = pG′(X | Y = y).

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 6 / 32

Treewidth of grid graph?

What is the treewidth of a M × R node grid-structured MRF?

M

R

Choose smaller size, and eliminate variables on that side in any order

Will only introduce edges along the next row (column)

Thus, treewidth is at most min(M,R)

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 7 / 32

Midterm exam, etc.

Make sure you are on the course mailing list

No class next week, 10/14 (fall recess)

I will hold office hours 10/14 and there will be lab 10/16. Bring your
midterm-related questions!

Midterm exam in class on 10/21 (in 2 weeks). Closed book; no
calculators/phones/computers

Midterm covers everything up to and including this week’s lab (10/9)

PS4 released after midterm exam

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 8 / 32

How to study for the midterm

1 Go over slides and your notes from lecture & lab

2 Carefully go over required readings and the homeworks

3 Do practice problems from the end of the Murphy chapters, e.g. all of
the questions for Chapters 10 and 20, and exercices 19.5 and 22.4

4 Experiment with structure learning code from 3rd lab:

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 9 / 32

Today’s lecture

1 Integer linear programming

2 MAP inference as an integer linear program

3 Linear programming relaxations for MAP inference

4 Dual decomposition

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 10 / 32

MAP inference

Recall the MAP inference task,

arg max
x

p(x), p(x) =
1

Z

∏

c∈C
φc(xc)

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

Since the normalization term is simply a constant, this is equivalent to

arg max
x

∏

c∈C
φc(xc)

(called the max-product inference task)

Furthermore, since log is monotonic, letting θc(xc) = lg φc(xc), we have that
this is equivalent to

arg max
x

∑

c∈C
θc(xc)

(called max-sum)

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 11 / 32

Motivating application: protein side-chain placement

Find “minimum energy” conformation of amino acid side-chains along
a fixed carbon backbone:  Given desired 3D structure, choose amino-acids giving the most stable folding

  Joint distribution over the variables is given by

 Key problems

  Find marginals:

  Find most likely assignment (MAP):

Probabilistic inference

Partition function

Protein backbone

Side-chain�
(corresponding to�

 1 amino acid)

X1

X2
X3

X3

X1

X2

X4

θ34(x3, x4)

θ12(x1, x2)

θ13(x1, x3)

“Potential” function�
 for each edge

(Yanover, Meltzer, Weiss ‘06)

Focus of this talk

Orientations of the side-chains are represented by discretized angles
called rotamers

Rotamer choices for nearby amino acids are energetically coupled
(attractive and repulsive forces)

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 12 / 32

Motivating application: dependency parsing

Given a sentence, predict the dependency tree that relates the words:
1.2 Motivating Applications 5

Non-Projective Dependency Parsing

�

Figure 1.1: Example of dependency parsing for a sentence in English. Every
word has one parent, i.e. a valid dependency parse is a directed tree. The red
arc demonstrates a non-projective dependency.

x = {xi}i2V that maximizes
X

i2V

✓i(xi) +
X

ij2E

✓ij(xi, xj).

Without additional restrictions on the choice of potential functions, or which

edges to include, the problem is known to be NP-hard. Using the dual

decomposition approach, we will break the problem into much simpler sub-

problems involving maximizations of each single node potential ✓i(xi) and

each edge potential ✓ij(xi, xj) independently from the other terms. Although

these local maximizing assignments are easy to obtain, they are unlikely

to agree with each other without our modifying the potential functions.

These modifications are provided by the Lagrange multipliers associated

with agreement constraints.

Our second example is dependency parsing, a key problem in natural

language processing (McDonald et al., 2005). Given a sentence, we wish

to predict the dependency tree that relates the words in the sentence. A

dependency tree is a directed tree over the words in the sentence where

an arc is drawn from the head word of each phrase to words that modify

it. For example, in the sentence shown in Fig. 1.1, the head word of the

phrase “John saw a movie” is the verb “saw” and its modifiers are the

subject “John” and the object “movie”. Moreover, the second phrase “that

he liked” modifies the word “movie”. In many languages the dependency

tree is non-projective in the sense that each word and its descendants in the

tree do not necessarily form a contiguous subsequence.

Formally, given a sentence with m words, we have m(m � 1) binary arc

selection variables xij 2 {0, 1}. Since the selections must form a directed

tree, the binary variables are governed by an overall function ✓T (x) with

the idea that ✓T (x) = �1 is used to rule out any non-trees. The selections

are further biased by weights on individual arcs, through ✓ij(xij), which

depend on the given sentence. In a simple arc factored model, the predicted

Arc from head word of each phrase to words that modify it

May be non-projective: each word and its descendents may not be a
contiguous subsequence

m words =⇒ m(m − 1) binary arc selection variables xij ∈ {0, 1}
Let x|i = {xij}j 6=i (all outgoing edges). Predict with:

max
x
θT (x) +

∑

ij

θij(xij) +
∑

i

θi |(x|i)

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 13 / 32

MAP as an integer linear program (ILP)

MAP as a discrete optimization problem is

arg max
x

∑

i∈V
θi (xi) +

∑

ij∈E
θij(xi , xj).

To turn this into an integer linear program, we introduce indicator variables

1 µi (xi), one for each i ∈ V and state xi
2 µij(xi , xj), one for each edge ij ∈ E and pair of states xi , xj

The objective function is then

max
µ

∑

i∈V

∑

xi

θi (xi)µi (xi) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

What is the dimension of µ, if binary variables?

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 14 / 32

What are the constraints?

Force every “cluster” of variables to choose a local assignment:

µi (xi) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi) = 1 ∀i ∈ V

µij(xi , xj) ∈ {0, 1} ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these local assignments are globally consistent:

µi (xi) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 15 / 32

MAP as an integer linear program (ILP)

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi)µi (xi) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to:

µi (xi) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi) = 1 ∀i ∈ V

µi (xi) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 16 / 32

Linear programming relaxation for MAP

Integer linear program was:

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi)µi (xi) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to

µi (xi) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi) = 1 ∀i ∈ V

µi (xi) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Relax integrality constraints, allowing the variables to be between 0 and 1:

µi (xi) ∈ [0, 1] ∀i ∈ V , xi

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 17 / 32

Linear programming relaxation for MAP
Linear programming relaxation is:

LP(θ) = max
µ

∑
i∈V

∑
xi

θi (xi)µi (xi) +
∑
ij∈E

∑
xi ,xj

θij (xi , xj)µij (xi , xj)

µi (xi) ∈ [0, 1] ∀i ∈ V , xi∑
xi

µi (xi) = 1 ∀i ∈ V

µi (xi) =
∑
xj

µij (xi , xj) ∀ij ∈ E , xi

µj (xj) =
∑
xi

µij (xi , xj) ∀ij ∈ E , xj

Linear programs can be solved efficiently! Simplex method, interior point,
ellipsoid algorithm

Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher

MAP(θ) ≤ LP(θ)

LP relaxation is tight for tree-structured MRFs

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 18 / 32

Today’s lecture

1 Integer linear programming

2 MAP inference as an integer linear program

3 Linear programming relaxations for MAP inference

4 Dual decomposition

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 19 / 32

Dual decomposition

Consider the MAP problem for pairwise Markov random fields:

MAP(θ) = max
x

∑

i∈V
θi (xi) +

∑

ij∈E
θij(xi , xj).

If we push the maximizations inside the sums, the value can only increase:

MAP(θ) ≤
∑

i∈V
max
xi

θi (xi) +
∑

ij∈E
max
xi ,xj

θij(xi , xj)

Note that the right-hand side can be easily evaluated

One can always reparameterize a distribution by operations like

θnewi (xi) = θoldi (xi) + f (xi)

θnewij (xi , xj) = θoldij (xi , xj)− f (xi)

for any function f (xi), without changing the distribution/energy

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 20 / 32

Dual decomposition
8 Introduction to Dual Decomposition for Inference

x1 x2

x3 x4

✓f(x1, x2)

✓h(x2, x4)

✓k(x3, x4)

✓g(x1, x3)

x1

�f2(x2)

�f1(x1)

�k4(x4)�k3(x3)

�g1(x1)
+

� �

� ��f1(x1)

�g3(x3)
�g1(x1)

�
� �h2(x2)

�h4(x4)

�
�

+ x3

�g3(x3)

�k3(x3)
x4 +

�k4(x4)

�h4(x4)

+x2

�f2(x2)

�h2(x2)

✓f(x1, x2)

✓h(x2, x4)

✓k(x3, x4)

✓g(x1, x3)

x3 x4

x4

x2

x2x1

x1

x3

Figure 1.2: Illustration of the the dual decomposition objective. Left: The
original pairwise model consisting of four factors. Right: The maximization
problems corresponding to the objective L(�). Each blue ellipse contains the
factor to be maximized over. In all figures the singleton terms ✓i(xi) are set
to zero for simplicity.

pairwise model.

We will introduce algorithms that minimize the approximate objective

L(�) using local updates. Each iteration of the algorithms repeatedly finds

a maximizing assignment for the subproblems individually, using these to

update the dual variables that glue the subproblems together. We describe

two classes of algorithms, one based on a subgradient method (see Section

1.4) and another based on block coordinate descent (see Section 1.5). These

dual algorithms are simple and widely applicable to combinatorial problems

in machine learning such as finding MAP assignments of graphical models.

1.3.1 Derivation of Dual

In what follows we show how the dual optimization in Eq. 1.2 is derived

from the original MAP problem in Eq. 1.1. We first slightly reformulate

the problem by duplicating the xi variables, once for each factor, and then

enforce that these are equal. Let xf
i denote the copy of xi used by factor f .

Also, denote by xf
f = {xf

i }i2f the set of variables used by factor f , and by

xF = {xf
f}f2F the set of all variable copies. This is illustrated graphically

in Fig. 1.3. Then, our reformulated – but equivalent – optimization problem

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 21 / 32

Dual decomposition

Define:

θ̃i (xi) = θi (xi) +
∑

ij∈E
δj→i (xi)

θ̃ij(xi , xj) = θij(xi , xj)− δj→i (xi)− δi→j(xj)

It is easy to verify that
∑

i

θi (xi) +
∑

ij∈E
θij(xi , xj) =

∑

i

θ̃i (xi) +
∑

ij∈E
θ̃ij(xi , xj) ∀x

Thus, we have that:

MAP(θ) = MAP(θ̃) ≤
∑

i∈V
max
xi

θ̃i (xi) +
∑

ij∈E
max
xi ,xj

θ̃ij(xi , xj)

Every value of δ gives a different upper bound on the value of the MAP!

The tightest upper bound can be obtained by minimizing the r.h.s. with
respect to δ!

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 22 / 32

Dual decomposition

We obtain the following dual objective: L(δ) =

∑

i∈V
max
xi

(
θi (xi) +

∑

ij∈E
δj→i (xi)

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi)− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

This provides an upper bound on the MAP assignment!

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ)

How can find δ which give tight bounds?

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 23 / 32

Solving the dual efficiently

Many ways to solve the dual linear program, i.e. minimize with respect to δ:

∑

i∈V
max
xi

(
θi (xi) +

∑

ij∈E
δj→i (xi)

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi)− δi→j(xj)

)
,

One option is to use the subgradient method

Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation:

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 24 / 32

Max-product linear programming (MPLP) algorithm

Input: A set of factors θi (xi), θij(xi , xj)

Output: An assignment x1, . . . , xn that approximates the MAP

Algorithm:

Initialize δi→j(xj) = 0, δj→i (xi) = 0, ∀ij ∈ E , xi , xj

Iterate until small enough change in L(δ):

For each edge ij ∈ E (sequentially), perform the updates:

δj→i (xi) = −1

2
δ−ji (xi) +

1

2
max
xj

[
θij(xi , xj) + δ−ij (xj)

]
∀xi

δi→j(xj) = −1

2
δ−ij (xj) +

1

2
max
xi

[
θij(xi , xj) + δ−ji (xi)

]
∀xj

where δ−ji (xi) = θi (xi) +
∑

ik∈E ,k 6=j δk→i (xi)

Return xi ∈ arg maxx̂i θ̃
δ
i (x̂i)

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 25 / 32

Generalization to arbitrary factor graphs
16 Introduction to Dual Decomposition for Inference

Inputs:

A set of factors θi(xi), θf (xf).

Output:

An assignment x1, . . . , xn that approximates the MAP.

Algorithm:

Initialize δfi(xi) = 0, ∀f ∈ F, i ∈ f, xi.

Iterate until small enough change in L(δ) (see Eq. 1.2):
For each f ∈ F , perform the updates

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i


θf (xf) +

�

î∈f

δ−f

î
(xî)


 , (1.16)

simultaneously for all i ∈ f and xi. We define δ−f
i (xi) = θi(xi) +

�
f̂ �=f δf̂ i(xi).

Return xi ∈ arg maxx̂i θ̄
δ
i (x̂i) (see Eq. 1.6).

Figure 1.4: Description of the MPLP block coordinate descent algorithm
for minimizing the dual L(δ) (see Section 1.5.2). Similar algorithms can
be devised for different choices of coordinate blocks. See sections 1.5.1 and
1.5.3. The assignment returned in the final step follows the decoding scheme
discussed in Section 1.7.

1.5.1 The Max-Sum Diffusion algorithm

Suppose that we fix all of the dual variables δ except δfi(xi) for a specific f

and i. We now wish to find the values of δfi(xi) that minimize the objective

L(δ) given the other fixed values. In general there is not a unique solution

to this restricted optimization problem, and different update strategies will

result in different overall running times.

The Max-Sum Diffusion (MSD) algorithm (Kovalevsky and Koval, approx.

1975; Werner, 2007, 2008) performs the following block coordinate descent

update (for all xi simultaneously):

δfi(xi) = −1
2δ

−f
i (xi) + 1

2 max
xf\i


θf (xf)−

�

î∈f\i

δf î(xî)


 , (1.17)

where we define δ−f
i (xi) = θi(xi) +

�
f̂ �=f δf̂ i(xi). The algorithm iteratively

chooses some f and performs these updates, sequentially, for each i ∈ f . In

Appendix 1.A we show how to derive this algorithm as block coordinate de-

scent on L(δ). The proof also illustrates the following equalization property:

after the update, we have θ̄δi (xi) = maxxf\i
θ̄δf (xf), ∀xi. In other words, the

reparameterized factors for f and i agree on the utility of state xi.

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 26 / 32

Experimental results

Comparison of two block coordinate descent algorithms on a 10× 10 node
Ising grid:

20 Introduction to Dual Decomposition for Inference

0 10 20 30
46

47

48

49

50

51

52

Iteration

O
b
je

ct
iv

e

MPLP
Star

Figure 1.5: Comparison of three coordinate descent algorithms on a 10⇥10
two dimensional Ising grid. The dual objective L(�) is shown as a function of
iteration number. We multiplied the number of iterations for the star update
by two, since each edge variable is updated twice.

and thus may result in faster convergence.

To assess the di↵erence between the algorithms, we test them on a pairwise

model with binary variables. The graph structure is a two dimensional 10⇥10

grid and the interactions are Ising (see Globerson and Jaakkola, 2008, for a

similar experimental setup). We compare three algorithms:

MSD - At each iteration, for each edge, updates the message from the

edge to one of its endpoints (i.e., �{i,j}i(xi) for all xi), and then updates the

message from the edge to its other endpoint.

MPLP - At each iteration, for each edge, updates the messages from the

edge to both of its endpoints (i.e., �{i,j}i(xi) and �{i,j}j(xj), for all xi, xj).

Star update - At each iteration, for each node i, updates the messages

from all edges incident on i to both of their endpoints (i.e., �{i,j}i(xi) and

�{i,j}j(xj) for all j 2 N(i), xi, xj).

MSD++ - See Section 1.5.6 below.

The running time per iteration of MSD and MPLP are identical. We let

each iteration of the star update correspond to two iterations of the edge

updates to make the running times comparable.

Results for a model with random parameters are shown in Fig. 1.5, and

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 27 / 32

Experimental results

Performance on stereo vision inference task:

Decoded assignment!

Dual obj.!

Iteration!

Objective!

Solved optimally!

Duality gap!

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 28 / 32

Today’s lecture

1 Dual decomposition

2 MAP inference as an integer linear program

3 Linear programming relaxations for MAP inference

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 29 / 32

Dual decomposition = LP relaxation

Recall we obtained the following dual linear program: L(δ) =
∑

i∈V
max
xi

(
θi (xi) +

∑

ij∈E
δj→i (xi)

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi)− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

We showed two ways of upper bounding the value of the MAP assignment:

MAP(θ) ≤ LP(θ) (1)

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ) (2)

Although we derived these linear programs in seemingly very different ways,
in turns out that:

LP(θ) = DUAL-LP(θ)

The dual LP allows us to upper bound the value of the MAP assignment
without solving a LP to optimality

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 30 / 32

Linear programming duality

(Dual) LP relaxation!

MAP assignment!
(Primal) LP relaxation!

�
µ�

x*! Integer linear program!

MAP(θ) ≤ LP(θ) = DUAL-LP(θ) ≤ L(δ)

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 31 / 32

How to solve integer linear programs?

Local search

Start from an arbitrary assignment (e.g., random). Iterate:
Choose a variable. Change a new state for this variable to maximize
the value of the resulting assignment

Branch-and-bound

Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment
Can use the LP relaxation or its dual to obtain upper bounds
Lower bound obtained from value of any assignment found

Branch-and-cut (most powerful method; used by CPLEX & Gurobi)

Same as branch-and-bound; spend more time getting tighter bounds
Adds cutting-planes to cut off fractional solutions of the LP relaxation,
making the upper bound tighter

David Sontag (NYU) Inference and Representation Lecture 6, Oct. 7, 2014 32 / 32

