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Approximate marginal inference

Given the joint p(x1, . . . , xn) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x1 | e)?

We showed in Lecture 4 that doing this exactly is NP-hard

Nearly all approximate inference algorithms are either:
1 Monte-carlo methods (e.g., Gibbs sampling, likelihood reweighting,

MCMC)
2 Variational algorithms (e.g., mean-field, loopy belief propagation)
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Latent Dirichlet allocation (LDA)

Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents
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Many applications in information retrieval, document summarization,
and classification
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LDA is one of the simplest and most widely used topic models
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are fixed hyperparameters. Thus θ is a distribution
over T topics with mean θt = αt/

∑
t′ αt′

2 For i = 1 to N, sample the topic zi of the i ’th word

zi |θ ∼ θ

3 ... and then sample the actual word wi from the zi ’th topic

wi |zi ∼ βzi
where {βt}Tt=1 are the topics (a fixed collection of distributions on
words)
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Example of using LDA

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

Figure 1: The intuitions behind latent Dirichlet allocation. We assume that some
number of “topics,” which are distributions over words, exist for the whole collection (far left).
Each document is assumed to be generated as follows. First choose a distribution over the
topics (the histogram at right); then, for each word, choose a topic assignment (the colored
coins) and choose the word from the corresponding topic. The topics and topic assignments
in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from
data.

model assumes the documents arose. (The interpretation of LDA as a probabilistic model is
fleshed out below in Section 2.1.)

We formally define a topic to be a distribution over a fixed vocabulary. For example the
genetics topic has words about genetics with high probability and the evolutionary biology
topic has words about evolutionary biology with high probability. We assume that these
topics are specified before any data has been generated.1 Now for each document in the
collection, we generate the words in a two-stage process.

1. Randomly choose a distribution over topics.

2. For each word in the document

(a) Randomly choose a topic from the distribution over topics in step #1.

(b) Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each
document exhibits the topics with different proportion (step #1); each word in each document

1Technically, the model assumes that the topics are generated first, before the documents.

3

θd

z1d

zNd

β1

βT

(Blei, Introduction to Probabilistic Topic Models, 2011)
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Approximate inference for latent Dirichlet Allocation

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Parameters are α and β

Both θd and zd are unobserved

The difficulty here is that inference is intractable – because of the
Dirichlet prior on ~θd , which encourages sparsity among the T topics

David Sontag (NYU) Inference and Representation Lecture 7, Oct. 28, 2014 6 / 26



Variational methods

Goal: Approximate difficult distribution p(x | e) with a new
distribution q(x) such that:

1 p(x | e) and q(x) are “close”
2 Computation on q(x) is easy

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

(measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p)

D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q

Notice that KL-divergence is asymmetric

David Sontag (NYU) Inference and Representation Lecture 7, Oct. 28, 2014 7 / 26



KL-divergence (see Section 2.8.2 of Murphy)

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Suppose p is the true distribution we wish to do inference with

What is the difference between the solution to

arg min
q

D(p‖q)

(called the M-projection of q onto p) and

arg min
q

D(q‖p)

(called the I-projection)?

These two will differ only when q is minimized over a restricted set of
probability distributions Q = {q1, . . .}, and in particular when p 6∈ Q
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KL-divergence – M-projection

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:

z1

z2

(b)
0 0.5 1
0

0.5

1

p=Green, q∗=Red
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KL-divergence – I-projection

q∗ = arg min
q∈Q

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)
.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:

z1

z2

(a)
0 0.5 1
0

0.5

1

p=Green, q∗=Red
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KL-divergence (single Gaussian)

In this simple example, both the M-projection and I-projection find an
approximate q(x) that has the correct mean (i.e. Ep[z] = Eq[z]):

z1

z2

(b)
0 0.5 1
0

0.5

1

z1

z2

(a)
0 0.5 1
0

0.5

1

What if p(x) is multi-modal?
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KL-divergence – M-projection (mixture of Gaussians)

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Now suppose that p(x) is mixture of two 2D Gaussians and Q is the set of
all 2D Gaussian distributions (with arbitrary covariance matrices):

p=Blue, q∗=Red

M-projection yields distribution q(x) with the correct mean and covariance.
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KL-divergence – I-projection (mixture of Gaussians)

q∗ = arg min
q∈Q

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)
.

p=Blue, q∗=Red (two local minima!)

Unlike the M-projection, the I-projection does not necessarily yield the
correct moments.
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Mapping of distributions to/from moments

Recall the definition of probability distributions in the exponential family:

q(x; η) = h(x) exp{η · f(x)− lnZ (η)}

f(x) are called the sufficient statistics

In the exponential family, there is a one-to-one correspondance between
distributions q(x; η) and marginal vectors Eq[f(x)]

For example, when q is a Gaussian distribution,

q(x;µ,Σ) =
1

(2π)k/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

then f(x) = [x1, x2, . . . , xk , x
2
1 , x1x2, x1x3, . . . , x

2
2 , x2x3, . . .]

The expectation of f(x) gives the first and second-order (non-central)
moments, from which one can solve for µ and Σ
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Properties of exponential families

The derivative of the log-partition function is equal to the distribution’s marginals:

∂ηi lnZ (η) = ∂ηi ln
∑

x

exp{η · f(x)}

=
1∑

x exp{η · f(x)}∂ηi
∑

x

exp{η · f(x)}

=
1∑

x exp{η · f(x)}
∑

x

∂ηi exp{η · f(x)}

=
1∑

x exp{η · f(x)}
∑

x

exp{η · f(x)}∂ηi η · f(x)

=
1∑

x exp{η · f(x)}
∑

x

exp{η · f(x)}fi (x)

=
∑

x

exp{η · f(x)}∑
x̂ exp{η · f(x̂)} fi (x) =

∑

x

q(x)fi (x) = Eq[fi (x)].
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M-projection does moment matching

Recall that the M-projection is:

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Suppose that Q is an exponential family (p(x) can be arbitrary) and that we
perform the M-projection, finding q∗

Theorem: The expected sufficient statistics, with respect to q∗(x), are
exactly the marginals of p(x):

Eq∗ [f(x)] = Ep[f(x)]

Thus, solving for the M-projection (exactly) is just as hard as the original
inference problem
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M-projection does moment matching

Recall that the M-projection is:
q∗ = arg min

q(x;η)∈Q
D(p‖q) =

∑

x

p(x) log
p(x)

q(x)
.

Theorem: Eq∗ [f(x)] = Ep[f(x)].

Proof: Look at the first-order optimality conditions.

∂ηiD(p‖q) = −∂ηi
∑

x

p(x) log q(x)

= −∂ηi
∑

x

p(x) log
{
h(x) exp{η · f(x)− lnZ (η)}

}

= −∂ηi
∑

x

p(x)
{
η · f(x)− lnZ (η)

}

= −
∑

x

p(x)fi (x) + Eq(x;η)[fi (x)]

= −Ep[fi (x)] + Eq(x;η)[fi (x)] = 0.

Corollary: Even computing the gradients is hard (can’t do gradient descent)
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Most variational inference algorithms make use of the I-projection
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Variational methods

Suppose that we have an arbitrary graphical model:

p(x; θ) =
1

Z (θ)

∏

c∈C

φc(xc) = exp
(∑

c∈C

θc(xc)− lnZ (θ)
)

All of the approaches begin as follows:

D(q‖p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)
(∑

c∈C

θc(xc)− lnZ (θ)
)
− H(q(x))

= −
∑

c∈C

∑

x

q(x)θc(xc) +
∑

x

q(x) lnZ (θ)− H(q(x))

= −
∑

c∈C

Eq[θc(xc)] + lnZ (θ)− H(q(x)).
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Mean field algorithms for variational inference

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q(x)).

Although this function is concave and thus in theory should be easy
to optimize, we need some compact way of representing q(x)

Mean field algorithms assume a factored representation of the joint
distribution, e.g.

17

Mean Field ApproximationMean Field Approximation

33© Eric Xing @ CMU, 2005-2013

Naïve Mean Field

z Fully factorized variational distribution

34© Eric Xing @ CMU, 2005-2013q(x) =
∏

i∈V
qi (xi ) (called naive mean field)
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Naive mean-field

Suppose that Q consists of all fully factored distributions, of the form
q(x) =

∏
i∈V qi (xi )

We can use this to simplify

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q)

First, note that q(xc) =
∏

i∈c qi (xi )

Next, notice that the joint entropy decomposes as a sum of local entropies:

H(q) = −
∑

x

q(x) ln q(x)

= −
∑

x

q(x) ln
∏

i∈V

qi (xi ) = −
∑

x

q(x)
∑

i∈V

ln qi (xi )

= −
∑

i∈V

∑

x

q(x) ln qi (xi )

= −
∑

i∈V

∑

xi

qi (xi ) ln qi (xi )
∑

xV\i

q(xV\i | xi ) =
∑

i∈V

H(qi ).
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Naive mean-field

Suppose that Q consists of all fully factored distributions, of the form
q(x) =

∏
i∈V qi (xi )

We can use this to simplify

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q)

First, note that q(xc) =
∏

i∈c qi (xi )

Next, notice that the joint entropy decomposes as H(q) =
∑

i∈V H(qi ).

Putting these together, we obtain the following variational objective:

(∗) max
q

∑

c∈C

∑

xc

θc(xc)
∏

i∈c

qi (xi ) +
∑

i∈V

H(qi )

subject to the constraints

qi (xi ) ≥ 0 ∀i ∈ V , xi ∈ Val(Xi )
∑

xi∈Val(Xi )

qi (xi ) = 1 ∀i ∈ V
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Naive mean-field for pairwise MRFs

How do we maximize the variational objective?

(∗) max
q

∑

ij∈E

∑

xi ,xj

θij(xi , xj)qi (xi )qj(xj)−
∑

i∈V

∑

xi

qi (xi ) ln qi (xi )

This is a non-concave optimization problem, with many local maxima!

Nonetheless, we can greedily maximize it using block coordinate ascent:

1 Iterate over each of the variables i ∈ V . For variable i ,
2 Fully maximize (*) with respect to {qi (xi ),∀xi ∈ Val(Xi )}.
3 Repeat until convergence.

Constructing the Lagrangian, taking the derivative, setting to zero, and
solving yields the update: (shown on blackboard)

qi (xi )←
1

Zi
exp

{
θi (xi ) +

∑

j∈N(i)

∑

xj

qj(xj)θij(xi , xj)
}
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How accurate will the approximation be?

Consider a distribution which is an XOR of two binary variables A and
B: p(a, b) = 0.5− ε if a 6= b and p(a, b) = ε if a = b

The contour plot of the variational objective is:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Q(a1)

Q
(b

1 )

Even for a single edge, mean field can give very wrong answers!

Interestingly, once ε > 0.1, mean field has a single maximum point at
the uniform distribution (thus, exact)
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Structured mean-field approximations

Rather than assuming a fully-factored distribution for q, we can use a
structured approximation, such as a spanning tree

For example, for a factorial HMM, a good approximation may be a
product of chain-structured models:146 Mean Field Methods

Fig. 5.4 Structured mean field approximation for a factorial HMM. (a) Original model
consists of a set of hidden Markov models (defined on chains), coupled at each time by
a common observation. (b) An equivalent model, where the ellipses represent interactions
among all nodes at a fixed time, induced by the common observation. (c) Approximating
distribution formed by a product of chain-structured models. Here µα and µδ are the sets
of mean parameters associated with the indicated vertex and edge, respectively.

on some subset of M nodes that are coupled at a given time slice (e.g.,

see ellipse in panel (c)). Note that this subset of nodes is independent

with respect to the approximating distribution. Therefore, the function

gβ(µ(F )) will decouple into a product of terms of the form fi({µi(F )}),

where each fi is some function of the mean parameters {µi} ≡ {µi(F )}
associated with node i = 1, . . . ,M in the relevant cluster. For instance, if

the factorial HMM involved binary variables and M = 3 and β = (stu),

then gstu(µ) = µsµtµu.

The decoupled nature of the approximation yields valuable savings

on the computational side. In particular, the junction tree updates nec-

essary to maintain consistency of the approximation can be performed

by applying the forward–backward algorithm (i.e., the sum-product

updates as an exact method) to each chain separately. This decoupling

also has important consequences for the structure of any mean field

fixed point. In particular, it can be seen that no term gβ(µ(F )) will
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Approximate inference for latent Dirichlet Allocation

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Parameters are α and β

Both θd and zd are unobserved

Use the mean field approximation:

q(θd , zd |γd , φd) = q(θd | γd)
N∏

n=1

q(zn | φdn)
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