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Approximate marginal inference

e Given the joint p(xi,...,x,) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x; | €)?

@® We showed in Lecture 4 that doing this exactly is NP-hard

o Nearly all approximate inference algorithms are either:

© Monte-carlo methods (e.g., Gibbs sampling, likelihood
reweighting, MCMC)
@ Variational algorithms (e.g., mean-field, loopy belief propagation)
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Generating samples from a Bayesian network

Algorithm 12.1 Forward Sampling in a Bayesian network
Procedure Forward-Sample (
B I/ Bayesian network over X’

)
Let X1,...,X, be a topological ordering of X’
fori=1,...,n
u; +— a:<PaX1.> /I Assignment to Pax, in z1,..., 21
Sample xz; from P(X; | u;)
return (z1,...,%,)

Ol B~ W N =

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)
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Monte-Carlo algorithms

e Given a joint distribution p(x, ..., X,), how do we compute
marginals?
plX1 =x1] = Explf(x)], where f(x) = 1[X; = xq]

= > p()f(x).

@ Rather than explicitly enumerating all assignments, consider the
following Monte-Carlo estimate of the expectation:

xt ~ p(x)
X~ p(x)
M~ p(x)

o Then, our estimate is E,[f(x)] = . Zrl\:ﬂ f(x™). How good is it?
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Monte-Carlo algorithms

o Let D = {x!,...,xM}. Since D was drawn randomly from p(x), the
estimate is itself a random variable

@ The estimate is unbiased because

Exl,.l.,xMNp(x)[é[f(X)]} = Exl,.l.,xwa(x)[A]_ﬂﬁf(xm)}

- MZEX’"NP [ )}

= x~p(x)[f(x )]

@ How quickly does the estimate converge to the true expectation?
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Law of large numbers

@ There are two general results we can use, depending on whether we care
about additive or multiplicative error

Hoeffding bound says that:

Prop(x) [Ep[f (x)] — € < Ep[f(x)] < Ep[f(x)] + E] S 1 pe—2Me

Chernoff bound says that (assuming f(x) € [0, 1]):

Pro i) [ELF0N(1 — ) < EplF(0] < EF(I(1+ )] > 1—2e5 50

Estimating single-variable marginals for a BN is easy: just forward sample!

What about computing conditional queries such as p(X = x | E=e)?

Computing denominator of p(X = x,E = e)/p(E = e) needs Q(1/p(E = e))
samples, by Chernoff bound. In this setting, no point in even using a BN,
could simply estimate directly from data!
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“Normalized” Importance Sampling

o If we could instead directly sample from p(X | E = e), we would be in
business — but this is hard!

@ For the same reason, sampling from an undirected graphical model
p(x) = %HCEC ®c(xc) — even without evidence — is hard, because we
don't know Z

@ Suppose we instead had a simpler-to-sample-from distribution g(x),
called the “proposal distribution”

o Let p(x) be an unnormalized version of the distribution, e.g.

p(x) = p(x,E=-e) (BN with evidence)
px) = [ écx) (MRF)

ceC

Note that we can efficiently evaluate p(x) for any x
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“Normalized” Importance Sampling
- xM~ g(x)):
)

o Consider the following estimate (now using x?, .
3 Some F(XT)W(x™) (x
M Sm= ,  where w(x) = )
X

Eolf(x)] =
bl ] = M

"Oz

Q
—

@ This is not an unbiased estimate! E.g., for M = 1, we have
f(x!)w(x!)
| = Bl

Eaatd | 1)
#  Exop[f(¥)]-

Euyreat) | EnlF(0)]] =

8 /11

@ However, the estimate is asymptotically correct (i.e., as M — o0)
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“Normalized” Importance Sampling
o Consider the following estimate (now using x!,...xM~ g(x)):
_B(x)

1 X m
MZ 1 () (x ), where w(x) %)

Ep[f(x)] =
% Zm:l ( )
(x)Z, the expectation of the numerator is

o Letting p(x) =
M
Z xm~q(x)[f )W(X )]

1 M
1« p(x)
:MEEWW%M
1 M
= > Y BXf(x) = ZE[f(x)]
=1 X

m
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“Normalized” Importance Sampling

o Consider the following estimate (now using x?, ... xM~ g(x)):

= X —%Z f(x) (x™) wereﬁ/x—@
Eplf (] = MRS TS where @) = £

o Letting p(x) = p(x)Z, the expectation of the numerator is ZE,[f(x)].
@ The expectation of the denominator is Z!

M

1 1 &
Epato 7 22 M| = 5 3 oo (<7
M ~
- M Z:: Z [p(x }
= mzl\:: Z B(x
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Likelihood weighting

@ What should we use for g(x)? For a Bayesian network, we can sample
sample from the latent variables, keeping the evidence fixed

Algorithm 12.2 Likelihood-weighted particle generation
Procedure LW-Sample (
B, I/ Bayesian network over X’
Z =z Il Event in the network
)

1 Let X1,..., X, be a topological ordering of X’

2 w1

3 fori=1,....n

4 wu; < x(Pay,) /I Assignment to Pax, in z1,...,2i—1

5 if X; & Z then

6 Sample z; from P(X; | u;)

7 else

8 z; < z(X;) Il Assignment to X; in z

9 w <+ w-P(z; | w;) /I Multiply weight by probability of desired value
10 return (z1,...,2,),w

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)

@ Corresponds to importance sampling using:

I_Ipx,_s|xpa Hl[xt—et] so w(x) =

tZE teE

X

X H p(Xt | Xpa(t )

tcE

'Uz

/\
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