
Inference and Representation

David Sontag

New York University

Lecture 8, Nov. 4, 2014

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 1 / 11

Approximate marginal inference

Given the joint p(x1, . . . , xn) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x1 | e)?

We showed in Lecture 4 that doing this exactly is NP-hard

Nearly all approximate inference algorithms are either:
1 Monte-carlo methods (e.g., Gibbs sampling, likelihood

reweighting, MCMC)
2 Variational algorithms (e.g., mean-field, loopy belief propagation)

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 2 / 11

Generating samples from a Bayesian network

12.1. Forward Sampling 489

Algorithm 12.1 Forward Sampling in a Bayesian network

Procedure Forward-Sample (
B // Bayesian network over X

)
1 Let X1, . . . , Xn be a topological ordering of X
2 for i = 1, . . . , n
3 ui ← x⟨PaXi⟩ // Assignment to PaXi in x1, . . . , xi−1

4 Sample xi from P (Xi | ui)
5 return (x1, . . . , xn)

heads, so that we pick the value d1 for D. Similarly, we sample I from its distribution; say that the
result is i0. Given those, we know the right distribution from which to sample G: P (G | i0, d1), as
defined by G’s CPD; we therefore pick G to be g1 with probability 0.05, g2 with probability 0.25,
and g3 with probability 0.7. The process continues similarly for S and L.

As shown in algorithm 12.1, we sample the nodes in some order consistent with the partial
order of the BN, so that by the time we sample a node we have values for all of its parents.
We can then sample from the distribution defined by the CPD and by the chosen values for
the node’s parents. Note that the algorithm requires that we have the ability to sample from
the distributions underlying our CPD. Such sampling is straightforward in the discrete case (see
box 12.A), but subtler when dealing with continuous measures (see section 14.5.1).

Box 12.A — Skill: Sampling from a Discrete Distribution. How do we generate a sample from
a distribution? For a uniform distribution, we can use any pseudo-random number generator on our
machine. Other distributions require more thought, and much work has been devoted in statistics
to the problem of sampling from a variety of parametric distributions. Most obviously, consider
a multinomial distribution P (X) for Val(X) = {x1, . . . , xk}, which is defined by parameters
θ1, . . . , θk . This process can be done quite simply as follows: We generate a sample s uniformly
from the interval [0, 1]. We then partition the interval into k subintervals: [0, θ1), [θ1, θ1 +θ2), . . .;
that is, the ith interval is [

∑i−1
j=1 θj ,

∑i
j=1 θj). If s is in the ith interval, then the sampled value is

xi. We can determine the interval for s using binary search in time O(log k).
This approach gives us a general-purpose solution for generating samples from the CPD of any

discrete-valued variable: given a parent assignment u, we can always generate the full conditional
distribution P (X | u) and sample from it. (Of course, more efficient methods may exist if X has a
large value space or a CPD that requires an expensive computation.) As we discuss in section 14.5.1,
the problem of sampling from continuous CPDs is considerably more complex.

Using basic convergence bounds (see appendix A.2), we know that from a set of particlesconvergence
bound D = {ξ[1], . . . , ξ[M]} generated via this sampling process, we can estimate the expectation of

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 3 / 11

Monte-Carlo algorithms

Given a joint distribution p(x1, . . . , xn), how do we compute
marginals?

p[X1 = x1] = Ex∼p[f (x)], where f (x) = 1[X1 = x1]

=
∑

x

p(x)f (x).

Rather than explicitly enumerating all assignments, consider the
following Monte-Carlo estimate of the expectation:

x1 ∼ p(x)

x2 ∼ p(x)
...

xM ∼ p(x)

Then, our estimate is Êp[f (x)] = 1
M

∑M
m=1 f (xm). How good is it?

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 4 / 11

Monte-Carlo algorithms

Let D = {x1, . . . , xM}. Since D was drawn randomly from p(x), the
estimate is itself a random variable

The estimate is unbiased because

Ex1,...,xM∼p(x)

[
Ê [f (x)]

]
= Ex1,...,xM∼p(x)

[1

M

M∑

m=1

f (xm)
]

=
1

M

M∑

m=1

Exm∼p(x)

[
f (xm)

]

= Ex∼p(x)[f (xm)].

How quickly does the estimate converge to the true expectation?

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 5 / 11

Law of large numbers

There are two general results we can use, depending on whether we care
about additive or multiplicative error

Hoeffding bound says that:

PrD∼p(x)
[
Ep[f (x)]− ε ≤ ÊD[f (x)] ≤ Ep[f (x)] + ε

]
≥ 1− 2e−2Mε2

Chernoff bound says that (assuming f (x) ∈ [0, 1]):

PrD∼p(x)
[
Ep[f (x)](1− ε) ≤ ÊD[f (x)] ≤ Ep[f (x)](1 + ε)

]
≥ 1− 2e

−Mε2

3 Ep [f (x)]

Estimating single-variable marginals for a BN is easy: just forward sample!

What about computing conditional queries such as p(X = x | E = e)?

Computing denominator of p(X = x,E = e)/p(E = e) needs Ω(1/p(E = e))
samples, by Chernoff bound. In this setting, no point in even using a BN,
could simply estimate directly from data!

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 6 / 11

“Normalized” Importance Sampling

If we could instead directly sample from p(X | E = e), we would be in
business – but this is hard!

For the same reason, sampling from an undirected graphical model
p(x) = 1

Z

∏
c∈C φc(xc) – even without evidence – is hard, because we

don’t know Z

Suppose we instead had a simpler-to-sample-from distribution q(x),
called the “proposal distribution”

Let p̃(x) be an unnormalized version of the distribution, e.g.

p̃(x) = p(x,E = e) (BN with evidence)

p̃(x) =
∏

c∈C
φc(xc) (MRF)

Note that we can efficiently evaluate p̃(x) for any x

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 7 / 11

“Normalized” Importance Sampling

Consider the following estimate (now using x1, . . . xM∼ q(x)):

ÊD[f (x)] =
1
M

∑M
m=1 f (xm)w̃(xm)

1
M

∑M
m=1 w̃(xm)

, where w̃(x) =
p̃(x)

q(x)

This is not an unbiased estimate! E.g., for M = 1, we have

Ex1∼q(x)

[
ÊD[f (x)]

]
= Ex1∼q(x)

[f (x1)w̃(x1)

w̃(x1)

]
= Ex∼q(x)[f (x)]

6= Ex∼p(x)[f (x)].

However, the estimate is asymptotically correct (i.e., as M →∞)

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 8 / 11

“Normalized” Importance Sampling

Consider the following estimate (now using x1, . . . xM∼ q(x)):

ÊD[f (x)] =
1
M

∑M
m=1 f (xm)w̃(xm)

1
M

∑M
m=1 w̃(xm)

, where w̃(x) =
p̃(x)

q(x)

Letting p̃(x) = p(x)Z , the expectation of the numerator is:

ED∼q(x)

[1

M

M∑

m=1

f (xm)w̃(xm)
]

=
1

M

M∑

m=1

Exm∼q(x)[f (xm)w̃(xm)]

=
1

M

M∑

m=1

∑

x

q(x)
[
f (x)

p̃(x)

q(x)

]

=
1

M

M∑

m=1

∑

x

p̃(x)f (x) = ZEp[f (x)].

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 9 / 11

“Normalized” Importance Sampling

Consider the following estimate (now using x1, . . . xM∼ q(x)):

ÊD[f (x)] =
1
M

∑M
m=1 f (xm)w̃(xm)

1
M

∑M
m=1 w̃(xm)

, where w̃(x) =
p̃(x)

q(x)

Letting p̃(x) = p(x)Z , the expectation of the numerator is ZEp[f (x)].

The expectation of the denominator is Z !

ED∼q(x)

[1

M

M∑

m=1

w̃(xm)
]

=
1

M

M∑

m=1

Exm∼q(x)[w̃(xm)]

=
1

M

M∑

m=1

∑

x

q(x)
[p̃(x)

q(x)

]

=
1

M

M∑

m=1

∑

x

p̃(x) = Z .

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 10 / 11

Likelihood weighting

What should we use for q(x)? For a Bayesian network, we can sample
sample from the latent variables, keeping the evidence fixed

12.2. Likelihood Weighting and Importance Sampling 493

Algorithm 12.2 Likelihood-weighted particle generation

Procedure LW-Sample (
B, // Bayesian network over X
Z = z // Event in the network

)
1 Let X1, . . . , Xn be a topological ordering of X
2 w ← 1
3 for i = 1, . . . , n
4 ui ← x⟨PaXi

⟩ // Assignment to PaXi in x1, . . . , xi−1

5 if Xi ̸∈ Z then
6 Sample xi from P (Xi | ui)
7 else
8 xi ← z⟨Xi⟩ // Assignment to Xi in z

9 w ← w · P (xi | ui) // Multiply weight by probability of desired value
10 return (x1, . . . , xn), w

I = i1 and force S = s1 should be worth 80 percent of a sample, whereas one where we have
I = i0 and force S = s1 should only be worth 5 percent of a sample.

When we have multiple observations and we want our sampling process to set all of them to
their observed values, we need to consider the probability that each of the observation nodes,
had it been sampled using the standard forward sampling process, would have resulted in the
observed values. The sampling events for each node in forward sampling are independent,
and hence the weight for each sample should be the product of the weights induced by each
evidence node separately.

Example 12.3 Consider the same network, where our evidence set now consists of l0, s1. Assume that we sample
D = d1, I = i0, set S = s1, sample G = g2, and set L = l0. The probability that, given
I = i0, forward sampling would have generated S = s1 is 0.05. The probability that, given
G = g2, forward sampling would have generated L = l0 is 0.4. If we consider the standard
forward sampling process, each of these events is the result of an independent coin toss. Hence, the
probability that both would have occurred is simply the product of their probabilities. Thus, the
weight required for this sample to compensate for the setting of the evidence is 0.05 · 0.4 = 0.02.

Generalizing this intuition results in an algorithm called likelihood weighting (LW), shown inlikelihood
weighting algorithm 12.2. The name indicates that the weights of different samples are derived from the

likelihood of the evidence accumulated throughout the sampling process.
This process generates a weighted particle. We can now estimate a conditional proba-weighted particle

bility P (y | e) by using LW-Sample M times to generate a set D of weighted particles
⟨ξ[1], w[1]⟩, . . . , ⟨ξ[M], w[M]⟩. We then estimate:

P̂D(y | e) =

∑M
m=1 w[m]11{y[m] = y}

∑M
m=1 w[m]

. (12.6)

This estimator is an obvious generalization of the one we used for unweighted particles inestimator

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)

Corresponds to importance sampling using:

q(x) =
∏

t 6∈E

p(xt | xpa(t))
∏

t∈E

1[xt = et], so w̃(x) =
p̃(x)

q(x)
=

∏

t∈E

p(xt | xpa(t)).

David Sontag (NYU) Inference and Representation Lecture 8, Nov. 4, 2014 11 / 11

