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Variational methods

@ Suppose that we have an arbitrary graphical model:
p(x;0) = Hqﬁc Xc) exp(ZG xc)—InZ( ))
ceC

@ All of the approaches begin as follows:

D(qlp) = Zq(X)ln@

- p(x)
1
= —Zq(x In p(x Z g(x)In 70
- —Zq(x D Oe(xe) — In Z(0)) — H(q(x))

ceC
= 33 a0l +Z )InZ(0) — H(q(x))
ceC x
= —ZEq[ec(Xc]-i-“'lZ( ) — H(a(x)).
ceC
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The log-partition function

e Since D(q||p) > 0, we have

B Z Eqwc(xc)] +In Z(O) - H(q(x)) >0,

ceC
which implies that
InZ(0) >~ Eqlbc(xc)] + H(q(x)).
ceC

@ Thus, any approximating distribution g(x) gives a lower bound on the
log-partition function (for a BN, this is the log probability of the
observed variables)

o Recall that D(q||p) = 0 if and only if p = q.Thus, if we allow
ourselves to optimize over all distributions, we have:

InZ(6) = max > Eqlfe(xc)] + H(q(x)).

ceC
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Re-writing objective in terms of moments

InZ(0) = max 25[9 (xc)] + H(q(x))

ceC

= max ZZ c(%e) + H(q(x))
ceC x

= max ZZCI(XCH (xc) + H(q(x))-
ceC Xxc

@ Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

@ Define pg = E4[f(x)] to be the marginals of g(x)

@ We can re-write the objective as

In Z(6) = max max ZZQ xe)pe(xe) + H(q(x)),

EM g:E,[f(x
HEM g:Eq[f( el =

where M, the marginal polytope, consists of all valid marginal vectors
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Re-writing objective in terms of moments

@ Next, push the max over g instead to obtain:

InZ(9) = mszzec(xc)uc(xc)—i— H(u), where

ceC X
H = max H
W) = e, @

@ For discrete random variables, the marginal polytope M is given by
M = {/J ERY | pu= Z p(x)f(x) for some p(x) > 0, Z p(x) = 1}
xexm xexm

= conv{f(x), X € X'"} (conv denotes the convex hull operation)

@ For a discrete-variable MRF, the sufficient statistic vector f(x) is simply the
concatenation of indicator functions for each clique of variables that appear
together in a potential function

@ For example, if we have a pairwise MRF on binary variables with m = |V/|
variables and |E| edges, d = 2m + 4|E]|
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Marginal polytope for discrete MRFs

<— Assignment for X,

. |
® Marginal polytope 0
(I) (Wainwright & Jordan, '03) ? <— Assignment for X,
. I / | | «— Assignment for X,
"=]o 0
0 (I) <— Edge assignment for
0 —
| H=10 X%y
0 (0]
0 1 0 | «— Edge assignment for
o TTT I
0 A 0 72
I valid marginal probabilities 0
0 0 | «— Edge assignment for
0 X, =1 (IJ XXy
|
KJ i o] x,=0
XZ =] X3 =0
XZ =] X3= 0

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 11, 2014



Relaxation

InZ(6 —maxZZ@ Xe)te(xe) + H(u)

ceC Xc

@ We still haven't achieved anything, because:

@ The marginal polytope M is complex to describe (in general,
exponentially many vertices and facets)
@ H(p) is very difficult to compute or optimize over

@ We now make two approximations:

@ We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints M, B
@ We replace H(u) with a function H(u) which approximates H(u)
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Local consistency constraints

@ Force every “cluster” of variables to choose a local assignment:
,u,-(x,-) > 0 VieV,x
Z/J,,’(X,‘) = 1 VieV
pii(xi,x;)) > 0 Vij€ E, xi,x;
D uilax) = 1 VieE

Xiy Xj

@ Enforce that these local assignments are globally consistent:
i) = Y milxix) Vi€ E.xi
]
ni(x) = ZUU(XhXj) Vij € E, x;
Xi
@ The local consistency polytope, M, is defined by these constraints

@ Look familiar? Same local consistency constraints as used in Lecture 6 for
the linear programming relaxation of MAP inference!
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Local consistency constraints are exact for trees

The marginal polytope depends on the specific sufficient statistic vector f(x)

@ Theorem: The local consistency constraints exactly define the marginal
polytope for a tree-structured MRF

@ Proof: Consider any pseudo-marginal vector i € M;. We will specify a
distribution pr(x) for which p;(x;) and p;(xi, x;) are the pairwise and
singleton marginals of the distribution pt

@ Let Xj be the root of the tree, and direct edges away from root. Then,

i, pa(i) (Xi> Xpa(i))
,DT(X) _ ,LL1(X1) H i,pa(i)\ iy Xpa(i) )
eV Hpa(i) (Xpa(i))
@ Because of the local consistency constraints, each term in the product can

be interpreted as a conditional probability.
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Example for non-tree models

@ For non-trees, the local consistency constraints are an outer bound on the
marginal polytope

@ Example of i € M;\M for a MRF on binary variables:

Mij(ﬁﬁz',xj) =

wn | O
o lwn
TR
X

X

@ To see that this is not in M, note that it violates the following triangle
inequality (valid for marginals of MRFs on binary variables):

Z pi2(xi, x2) + Z p2,3(x2, x3) + Z p13(x,x3) < 2.

X17£X0 X2F#X3 X17#X3
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Maximum entropy (MaxEnt)

o Recall that H(u) = maxq.g,[r(x)j=x H(q) is the entropy of the
maximum entropy distribution with marginals p

@ This yields the optimization problem:

max H(q(x)) = — Z q(x) log q(x)

q

Z g(x) =1 (strictly concave w.r.t. g(x))

X

@ E.g., when doing inference in a pairwise MRF, the «; will correspond
to ,LL/(X/) and ,u/k(x/,xk) for all (/, k) € E, x;, x
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What does the MaxEnt solution look like?

@ To solve the MaxEnt problem, we form the Lagrangian:
L=—> aq(x)logq(x ZA (Z q(x)fi(x) - a,> ~Asum (Z q(x) - 1)

@ Then, taking the derivative of the Lagrangian,

oL
— log q(x) — Aifi(X) — Asum
Fat) ~ g q(x) Z

@ And setting to zero, we obtain:

q*(X)=exp< — Asum Zkf(X>—el sum g™ 2 M)

@ From constraint _, g(x) = 1 we obtain el*Asum =3~ e~ 2 Afilx) = Z()\)

@ We conclude that the maximum entropy distribution has the form
(substituting 6 for —\)

() = 55 &0 £(x)
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Entropy for tree-structured models

@ Suppose that p is a tree-structured distribution, so that we are
optimizing only over marginals 1(x;, x;) for ij € T

@ We conclude from the previous slide that the arg maxg. g, (¢(x))= H(q)
is a tree-structured MRF

@ The entropy of g as a function of its marginals can be shown to be
= > H(ui) = > 1(uy)
icv jeT

where
H(pi) = —Zuf (xi) log pi(xi)

:U’U(XI’X_I)
I(pi) = 11 (X, ;) log —— >
Y 2_ i 11 (X1 )i ()

Xj,Xj

@ Can we use this for non-tree structured models?

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 11, 2014 13 /19



Bethe-free energy approximation

@ The Bethe entropy approximation is (for any graph)

Hethe (1) = Y H(pi) = > 1(1ij)

eV jeE

@ This gives the following variational approximation:

max Z Z Qc(xc)ﬂc(xc) + Hbethe(ﬁ)

eM,
HEML e " xe

@ For non tree-structured models this is not concave, and is hard to
maximize
@ Loopy belief propagation, if it converges, finds a saddle point!
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Concave relaxation

o Let H(y) be an upper bound on H(y), i.e. H(p) < A(p)

@ As a result, we obtain the following upper bound on the log-partition

function: ;
InZ(6) < max 3= 3 Oelxc)elxc) + ()

t ceC Xc

@ An example of a concave entropy upper bound is the tree-reweighted
approximation (Jaakkola, Wainwright, & Wilsky, '05), given by specifying a
distribution over spanning trees of the graph

f ! f !
b b b b
e e e e

Letting {p;j} denote edge appearance probabilities, we have:

Hrrw (i) =Y H(wi) = Y pil (1)

iev iicE
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Comparison of LBP and TRW

We showed two approximation methods, both making use of the local consistency
constraints M; on the marginal polytope:

© Bethe-free energy approximation (for pairwise MRFs):

max N pi(xi, x)05(xi, ) + Y H(p) = > (i)

eMm,
HET JEE Xi,X; iev jEE

e Not concave. Can use concave-convex procedure to find local optima
o Loopy BP, if it converges, finds a saddle point (often a local maxima)

@ Tree re-weighted approximation (for pairwise MRFs):

max ZZ’U’-’ X”XJ)H,J Xis Xj +ZH MI Zpul(lu’u)

eM
HEML JEE Xi,X; iev ijEE

o {pjj} are edge appearance probabilities (must be consistent with some

set of spanning trees)
e This is concave! Find global maximiza using projected gradient ascent
e Provides an upper bound on log-partition function, i.e. In Z(0) < (x)
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Two types of variational algorithms: Mean-field and

relaxation

max ZZ xc)Bc(xc) + H(q(x)).

ceC Xc

@ Although this function is concave and thus in theory should be easy to
optimize, we need some compact way of representing g(x)

@ Relaxation algorithms work directly with pseudomarginals which may not be
consistent with any joint distribution

@ Mean-field algorithms assume a factored representation of the joint
distribution, e.g.

o
O O 0 o0 o
O O O O O
O 0O 0 O ©o
O O O O O

(x) = H qi(xi) (called naive mean field)
iev
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Naive mean-field

@ Using the same notation as in the rest of the lecture, naive mean-field is:

max Oc(xc)ppe(xc) + H(ui)  subject to
PIPIL >

ceC X iev
wi(x;) > 0 VieV,x € Val(X;)
Z wilx;) = 1 VieV
X EVal(X;)
pe(xe) = HNI’(XI)
i€c

@ Corresponds to optimizing over an inner bound on the marginal polytope:
S,
A\

g‘b’

M(G)

@ We obtain a lower bound on the partition function, i.e. (x) <In Z(0)
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Obtaining true bounds on the marginals

@ Suppose we can obtain upper and lower bounds on the partition function

@ These can be used to obtain upper and lower bounds on marginals

@ Let Z(6,) denote the partition function of the distribution on Xy\; where
Xi = X

@ Suppose that L,, < Z(0,,) < Uy,

@ Then,

2o PO (xw i, X))
D% 2oy, XP(O(xwi> %))
2(6,)
25 Z(0%)
Us;

p(xi;0) =

IN

Ly,
- Ur

X i

@ Similarly, p(x;; 0) > >
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