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Variational methods

Suppose that we have an arbitrary graphical model:

p(x; θ) =
1

Z (θ)

∏

c∈C
φc(xc) = exp

(∑

c∈C
θc(xc)− lnZ (θ)

)

All of the approaches begin as follows:

D(q‖p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)
(∑

c∈C
θc(xc)− lnZ (θ)

)
− H(q(x))

= −
∑

c∈C

∑

x

q(x)θc(xc) +
∑

x

q(x) lnZ (θ)− H(q(x))

= −
∑

c∈C
Eq[θc(xc)] + lnZ (θ)− H(q(x)).
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The log-partition function

Since D(q‖p) ≥ 0, we have

−
∑

c∈C
Eq[θc(xc)] + lnZ (θ)− H(q(x)) ≥ 0,

which implies that

lnZ (θ) ≥
∑

c∈C
Eq[θc(xc)] + H(q(x)).

Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function (for a BN, this is the log probability of the
observed variables)

Recall that D(q‖p) = 0 if and only if p = q.Thus, if we allow
ourselves to optimize over all distributions, we have:

lnZ (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x)).
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Re-writing objective in terms of moments

lnZ (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x))

= max
q

∑

c∈C

∑

x

q(x)θc(xc) + H(q(x))

= max
q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q(x)).

Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

Define µq = Eq[f(x)] to be the marginals of q(x)

We can re-write the objective as

lnZ (θ) = max
µ∈M

max
q:Eq [f(x)]=µ

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(q(x)),

where M, the marginal polytope, consists of all valid marginal vectors
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Re-writing objective in terms of moments

Next, push the max over q instead to obtain:

lnZ (θ) = max
µ

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(µ), where

H(µ) = max
q:Eq [f(x)]=µ

H(q).

For discrete random variables, the marginal polytope M is given by

M =
{
µ ∈ Rd | µ =

∑

x∈Xm

p(x)f(x) for some p(x) ≥ 0,
∑

x∈Xm

p(x) = 1
}

= conv
{
f(x), x ∈ Xm

}
(conv denotes the convex hull operation)

For a discrete-variable MRF, the sufficient statistic vector f(x) is simply the
concatenation of indicator functions for each clique of variables that appear
together in a potential function

For example, if we have a pairwise MRF on binary variables with m = |V |
variables and |E | edges, d = 2m + 4|E |
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Marginal polytope for discrete MRFs
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Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
�

µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]
�

(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V | + k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x� = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x�) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 11, 2014 6 / 19



Relaxation

lnZ (θ) = max
µ∈M

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(µ)

We still haven’t achieved anything, because:

1 The marginal polytope M is complex to describe (in general,
exponentially many vertices and facets)

2 H(µ) is very difficult to compute or optimize over

We now make two approximations:

1 We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints ML

2 We replace H(µ) with a function H̃(µ) which approximates H(µ)

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 11, 2014 7 / 19



Local consistency constraints

Force every “cluster” of variables to choose a local assignment:

µi (xi ) ≥ 0 ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ≥ 0 ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these local assignments are globally consistent:

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

The local consistency polytope, ML is defined by these constraints

Look familiar? Same local consistency constraints as used in Lecture 6 for
the linear programming relaxation of MAP inference!
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Local consistency constraints are exact for trees

The marginal polytope depends on the specific sufficient statistic vector f(x)

Theorem: The local consistency constraints exactly define the marginal
polytope for a tree-structured MRF

Proof: Consider any pseudo-marginal vector ~µ ∈ ML. We will specify a
distribution pT (x) for which µi (xi ) and µij(xi , xj) are the pairwise and
singleton marginals of the distribution pT

Let X1 be the root of the tree, and direct edges away from root. Then,

pT (x) = µ1(x1)
∏

i∈V\X1

µi,pa(i)(xi , xpa(i))

µpa(i)(xpa(i))
.

Because of the local consistency constraints, each term in the product can
be interpreted as a conditional probability.
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Example for non-tree models

For non-trees, the local consistency constraints are an outer bound on the
marginal polytope

Example of ~µ ∈ ML\M for a MRF on binary variables:

0" .5"

.5" 0" X3!

X1!

X2 !
µij(xi, xj) =

Xj"="1"

Xi"="0"

Xi"="1"

Xj"="0"

To see that this is not in M, note that it violates the following triangle
inequality (valid for marginals of MRFs on binary variables):

∑

x1 6=x2

µ1,2(x1, x2) +
∑

x2 6=x3

µ2,3(x2, x3) +
∑

x1 6=x3

µ1,3(x1, x3) ≤ 2.
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Maximum entropy (MaxEnt)

Recall that H(µ) = maxq:Eq [f(x)]=µH(q) is the entropy of the
maximum entropy distribution with marginals µ

This yields the optimization problem:

max
q

H(q(x)) = −
∑

x

q(x) log q(x)

s.t.
∑

x

q(x)fi (x) = αi

∑

x

q(x) = 1 (strictly concave w.r.t. q(x))

E.g., when doing inference in a pairwise MRF, the αi will correspond
to µl(xl) and µlk(xl , xk) for all (l , k) ∈ E , xl , xk

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 11, 2014 11 / 19



What does the MaxEnt solution look like?

To solve the MaxEnt problem, we form the Lagrangian:

L = −
∑

x

q(x) log q(x)−
∑

i

λi

(∑

x

q(x)fi (x)− αi

)
−λsum

(∑

x

q(x)− 1

)

Then, taking the derivative of the Lagrangian,

∂L

∂q(x)
= −1− log q(x)−

∑

i

λi fi (x)− λsum

And setting to zero, we obtain:

q∗(x) = exp

(
−1− λsum −

∑

i

λi fi (x)

)
= e−1−λsume−

∑
i λi fi (x)

From constraint
∑

x q(x) = 1 we obtain e1+λsum =
∑

x e
−∑

i λi fi (x) = Z (λ)

We conclude that the maximum entropy distribution has the form
(substituting ~θ for −~λ)

q∗(x) =
1

Z (θ)
exp(θ · f(x))

David Sontag (NYU) Inference and Representation Lecture 9, Nov. 11, 2014 12 / 19



Entropy for tree-structured models

Suppose that p is a tree-structured distribution, so that we are
optimizing only over marginals µij(xi , xj) for ij ∈ T

We conclude from the previous slide that the arg maxq:Eq [f(x)]=µH(q)
is a tree-structured MRF

The entropy of q as a function of its marginals can be shown to be

H(~µ) =
∑

i∈V
H(µi )−

∑

ij∈T
I (µij)

where

H(µi ) = −
∑

xi

µi (xi ) logµi (xi )

I (µij) =
∑

xi ,xj

µij(xi , xj) log
µij(xi , xj)

µi (xi )µj(xj)

Can we use this for non-tree structured models?
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Bethe-free energy approximation

The Bethe entropy approximation is (for any graph)

Hbethe(~µ) =
∑

i∈V
H(µi )−

∑

ij∈E
I (µij)

This gives the following variational approximation:

max
µ∈ML

∑

c∈C

∑

xc

θc(xc)µc(xc) + Hbethe(~µ)

For non tree-structured models this is not concave, and is hard to
maximize

Loopy belief propagation, if it converges, finds a saddle point!
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Concave relaxation

Let H̃(µ) be an upper bound on H(µ), i.e. H(µ) ≤ H̃(µ)

As a result, we obtain the following upper bound on the log-partition
function:

lnZ (θ) ≤ max
µ∈ML

∑

c∈C

∑

xc

θc(xc)µc(xc) + H̃(µ)

An example of a concave entropy upper bound is the tree-reweighted
approximation (Jaakkola, Wainwright, & Wilsky, ’05), given by specifying a
distribution over spanning trees of the graph

b

e

f

b

e

f

b

e

f

b

e

f

(a) (b) (c) (d)

Figure 1. Illustration of the spanning tree poly-
tope T(G). Original graph is shown in panel (a).
Probability 1/3 is assigned to each of the three
spanning trees { Ti | i = 1, 2, 3 } shown in panels
(b)–(d). Edge b is a so-called bridge in G, mean-
ing that it must appear in any spanning tree (i.e.,
µb = 1). Edges e and f appear in two and one of the
spanning trees respectively, which gives rise to edge
appearance probabilities µe = 2/3 and µf = 1/3.

Tree-consistent pseudomarginals: The con-
straint set associated with our variational formula-
tion [10] is the set of so-called pseudomarginals that
satisfy certain tree-consistency constraints. To be pre-
cise, for each node s ∈ V , let Ts = {Ts;j | j ∈ Xs} be
a non-negative pseudomarginal vector with ms = |Xs|
elements; similarly, for each edge (s, t) ∈ E, let
Tst = {Tst;jk | (j, k) ∈ Xs × Xt} be a non-negative
pseudomarginal vector with ms × mt elements. On
occasion, we will also use the notation Ts(xs) to refer
to the function that takes the value Ts;j when xs = j;
the joint function Tst(xs, xt) is defined similarly. We
let T = {Ts, s ∈ V } ∪ { Tst, (s, t) ∈ E } denote the
full collection of pseudomarginals on nodes and edges.
This set of pseudomarginals is required to satisfy
a set of local normalization and marginalization
constraints; in particular, we require that they are
elements of the set

TREE(G) !
{

T
∣∣ ∑

k∈Xt

Tst;jk = Ts;j ,
∑

j∈Xs

Ts;j = 1
}

Our choice of notation is motivated by the fact that if
G is a tree, then TREE(G) is a complete description
of the set of valid (single node and edge) marginal
distributions.

Variational formulation We now present the vari-
ational problem that gives rise to upper bounds on the
log partition function. We begin by setting up the nec-
essary notation. For each s ∈ V and pseudomarginal
Ts, we define the single node entropy:

Hs(Ts) = −
∑

j∈Xs

Ts;j log Ts;j

Similarly, for each (s, t) ∈ E, we define the mutual
information between xs and xt as measured under the

joint pseudomarginal Tst:

Ist(Tst) =
∑

(j,k)

Tst;jk log
Tst;jk

(
∑

k∈Xt

Tst;jk)(
∑

j∈Xs

Tst;jk)

Borrowing terminology from statistical physics [11], we
define an “average energy” term as follows:

T · θ∗ =
∑

s∈V

∑

j

Ts;jθ
∗
s;j +

∑

(s,t)∈E

∑

(j,k)

Tst;jkθ∗
st;jk

Using this notation, our bounds are based on the fol-
lowing function:

F(T;µe; θ∗) ! −
∑

s∈V

Hs(Ts) +
∑

(s,t)∈E

µstIst(Tst) − T · θ∗

It can be seen that this function is closely related to
the Bethe free energy [11]. In fact, suppose that we
set µst = 1 for all edges (s, t) ∈ E, meaning that every
edge appears with probability one. In this case, the
function F(T;µe; θ∗) is equivalent to the Bethe free
energy on the constraint set TREE(G). However, the
choice µe = 1 belongs to the spanning tree polytope
T(G) only when the graph G is actually a tree.

In the paper [10], we prove the following result:

Theorem 1. For all µe ∈ T(G), the function
F(T ;µe; θ∗) is a convex in terms of T. Moreover, the
log partition function is bounded above by the solution
of the following variational problem:

Φ(θ∗) ≤ − min
T∈TREE(G)

F(T;µe; θ∗) (4)

The optimal solution T̂ = T̂(θ∗) to this minimization
is unique.

3.2 Tree-reweighted belief propagation

We now present a tree-reweighted belief propagation
algorithm designed to find the requisite set T̂ of pseu-
domarginals via a sequence of message-passing oper-
ations. This algorithm is the sum-product version of
the tree-reweighted max-product updates analyzed in
our related work [9].

The optimal collection T̂ of pseudomarginals, as a so-
lution to the constrained optimization problem (4),
must belong to TREE(G). In addition, it can be
shown [10] that they are characterized by the following
admissibility condition:

θ∗ · φ(x) + C =

∑

s∈V

log T̂ (xs) +
∑

(s,t)∈E

µst log
T̂st(xs, xt)

T̂s(xs)T̂t(xt)
(5)

Letting {ρij} denote edge appearance probabilities, we have:

HTRW (~µ) =
∑

i∈V
H(µi )−

∑

ij∈E
ρij I (µij)
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Comparison of LBP and TRW

We showed two approximation methods, both making use of the local consistency
constraints ML on the marginal polytope:

1 Bethe-free energy approximation (for pairwise MRFs):

max
µ∈ML

∑

ij∈E

∑

xi ,xj

µij(xi , xj)θij(xi , xj) +
∑

i∈V
H(µi )−

∑

ij∈E
I (µij)

Not concave. Can use concave-convex procedure to find local optima
Loopy BP, if it converges, finds a saddle point (often a local maxima)

2 Tree re-weighted approximation (for pairwise MRFs):

(∗) max
µ∈ML

∑

ij∈E

∑

xi ,xj

µij(xi , xj)θij(xi , xj) +
∑

i∈V
H(µi )−

∑

ij∈E
ρij I (µij)

{ρij} are edge appearance probabilities (must be consistent with some
set of spanning trees)
This is concave! Find global maximiza using projected gradient ascent
Provides an upper bound on log-partition function, i.e. lnZ (θ) ≤ (∗)
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Two types of variational algorithms: Mean-field and
relaxation

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q(x)).

Although this function is concave and thus in theory should be easy to
optimize, we need some compact way of representing q(x)

Relaxation algorithms work directly with pseudomarginals which may not be
consistent with any joint distribution

Mean-field algorithms assume a factored representation of the joint
distribution, e.g.

17

Mean Field ApproximationMean Field Approximation

33© Eric Xing @ CMU, 2005-2013

Naïve Mean Field

z Fully factorized variational distribution

34© Eric Xing @ CMU, 2005-2013

q(x) =
∏

i∈V
qi (xi ) (called naive mean field)
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Naive mean-field

Using the same notation as in the rest of the lecture, naive mean-field is:

(∗) max
µ

∑

c∈C

∑

xc

θc(xc)µc(xc) +
∑

i∈V
H(µi ) subject to

µi (xi ) ≥ 0 ∀i ∈ V , xi ∈ Val(Xi )∑

xi∈Val(Xi )

µi (xi ) = 1 ∀i ∈ V

µc(xc) =
∏

i∈c
µi (xi )

Corresponds to optimizing over an inner bound on the marginal polytope:5.4 Nonconvexity of Mean Field 141

Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for

some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this

polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset

of M(G) — must be a nonconvex set. To establish this claim, we first

observe that MF (G) contains all of the extreme points µx = φ(x) of

the polytope M(G). Indeed, the extreme point µx is realized by the

distribution that places all its mass on x, and such a distribution is

Markov with respect to any graph. Therefore, if MF (G) were a con-

vex set, then it would have to contain any convex combination of such

extreme points. But from the representation (5.24), taking convex com-

binations of all such extreme points generates the full polytope M(G).

Therefore, whenever MF (G) is a proper subset of M(G), it cannot be

a convex set.

Consequently, nonconvexity is an intrinsic property of mean field

approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

We obtain a lower bound on the partition function, i.e. (∗) ≤ lnZ (θ)
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Obtaining true bounds on the marginals

Suppose we can obtain upper and lower bounds on the partition function

These can be used to obtain upper and lower bounds on marginals

Let Z (θxi ) denote the partition function of the distribution on XV\i where
Xi = xi

Suppose that Lxi ≤ Z (θxi ) ≤ Uxi

Then,

p(xi ; θ) =

∑
xV\i

exp(θ(xV\i , xi ))
∑

x̂i

∑
xV\i

exp(θ(xV\i , x̂i ))

=
Z (θxi )∑
x̂i
Z (θx̂i )

≤ Uxi∑
x̂i
Lx̂i
.

Similarly, p(xi ; θ) ≥ Lxi∑
x̂i
Ux̂i

.
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