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Inference and Representation, Fall 2015
Problem Set 1: Bayesian networks
Due: Tuesday, September 22, 2015 at 3pm (as a PDF document sent to pg1338@nyu.edu)

Important: See problem set policy on the course web site.

1. You go for your yearly checkup and have several lab tests performed. A week later your
doctor calls you and says she has good and bad news. The bad news is that you tested
positive for a marker of a serious disease, and that the test is 99% accurate (i.e. the
probability of testing positive given that you have the disease is 0.99, as is the probability
of testing negative given that you don’t have the disease). The good news is that this is
a rare disease, striking only 1 in 25,000 people. Why is it good news that the disease is
rare? What are the chances that you actually have the disease?

2. Hidden Markov models. Harry lives a simple life. Some days he is Angry and some
days he is Happy. But he hides his emotional state, and so all we can observe is whether
he smiles, frowns, laughs, or yells. Harry’s best friend is utterly confused about whether
Harry is actually happy or angry and decides to model his emotional state using a hidden
Markov model.

Let Xd ∈ {Happy, Angry} denote Harry’s emotional state on day d, and let Yd ∈ {smile,
frown, laugh, yell} denote the observation made about Harry on day d. Assume that on
day 1 Harry is in the Happy state, i.e. X1 = Happy. Furthermore, assume that Harry
transitions between states exactly once per day (staying in the same state is an option)
according to the following distribution: p(Xd+1 = Happy | Xd = Angry) = 0.1, p(Xd+1 =
Angry | Xd = Happy) = 0.1, p(Xd+1 = Angry | Xd = Angry) = 0.9, and p(Xd+1 = Happy
| Xd = Happy) = 0.9.

The observation distribution for Harry’s Happy state is given by p(Yd = smile | Xd =
Happy) = 0.6, p(Yd = frown | Xd = Happy) = 0.1, p(Yd = laugh | Xd = Happy) = 0.2, and
p(Yd = yell | Xd = Happy) = 0.1. The observation distribution for Harry’s Angry state
is p(Yd = smile | Xd = Angry) = 0.1, p(Yd = frown | Xd = Angry) = 0.6, p(Yd = laugh |
Xd = Angry) = 0.1, and p(Yd = yell | Xd = Angry) = 0.2.

All of this is summarized in the following figure:
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Be sure to show all of your work for the below questions. Note, the goal of this
question is to get you to start thinking deeply about probabilistic inference. Thus, although
you could look at Chapter 17 for an overview of HMMs, try to solve this question based
on first principles (also: no programming needed!).

(a) What is p(X2 = Happy)?

(b) What is p(Y2 = frown)?

(c) What is p(X2 = Happy | Y2 = frown)?

(d) What is p(Y80 = yell)?

(e) Assume that Y1 = Y2 = Y3 = Y4 = Y5 = frown. What is the most likely se-
quence of the states? That is, compute the MAP assignment arg maxx1,...,x5

p(X1 =
x1, . . . , X5 = x5 | Y1 = Y2 = Y3 = Y4 = Y5 = frown).

3. Bayesian networks must be acyclic. Suppose we have a graph G = (V,E) and discrete
random variables X1, . . . , Xn, and define

f(x1, . . . , xn) =
∏
v∈V

fv(xv|xpa(v)),

where pa(v) refers to the parents of variable Xv in G and fv(xv | xpa(v)) specifies a distri-
bution over Xv for every assignment to Xv’s parents, i.e. 0 ≤ fv(xv | xpa(v)) ≤ 1 for all
xv ∈ Vals(Xv) and

∑
xv∈Vals(Xv)

fv(xv | xpa(v)) = 1. Recall that this is precisely the defi-
nition of the joint probability distribution associated with the Bayesian network G, where
the fv are the conditional probability distributions.

Show that if G has a directed cycle, f may no longer define a valid probability distribu-
tion. In particular, give an example of a cyclic graph G and distributions fv such that∑

x1,...,xn
f(x1, . . . , xn) 6= 1. (A valid probability distribution must be non-negative and

sum to one.) This is why Bayesian networks must be defined on acyclic graphs.

4. D-separation. Consider the Bayesian network shown in the below figure:

(d) Given three discrete random variables (X, Y, Z) and their PMF p, the
following three statements are all equivalent (that is, (i) ⇔ (ii) ⇔
(iii))

(i) X ⊥ Y | Z

(ii) p(x, y, z) = h(x, z)k(y, z) for some functions h and k.

(iii) p(x, y, z) = p(x, z)p(y, z)/p(z).
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Figure 1: (a) A directed graph. (b) An undirected graphical model: a 3 × 3
grid or lattice graph. (Two-dimensional lattices frequently arise in spatial
statistics.)

Problem 1.4
Directed graphical models: Consider the graph in Figure 1(a).

(a) Is the ordering {1, 2, . . . , 10} topological? If yes, justify your answer;
if not, find a topological ordering.

(b) Write down the standard factorization for the given graph.

(c) For what pairs (i, j) does the statement Xi ⊥ Xj hold? (Don’t assume
any conditioning in this part.)

(d) Suppose that we condition on {X2, X9}, shown shaded in the graph.
What is the largest set A for which the statement X1 ⊥ XA | {X2, X9}
holds. The Bayes ball algorithm could be helpful.

(e) What is the largest set B for which X8 ⊥ XB | {X2, X9} holds?
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(a) For what pairs (i, j) does the statement Xi ⊥ Xj hold? (Do not assume any condi-
tioning in this part.)

(b) Suppose that we condition on {X2, X9}, shown shaded in the graph. What is the
largest set A for which the statement X1 ⊥ XA | {X2, X9} holds? The Bayes ball
algorithm for d-separation given in Section 10.5.1 of Murphy’s book may be helpful.

(c) What is the largest set B for which X8 ⊥ XB | {X2, X9} holds?
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5. Consider the following distribution over 3 binary variables X,Y, Z:

p(x, y, z) =
{

1/12 x⊕ y ⊕ z = 0
1/6 x⊕ y ⊕ z = 1

where ⊕ denotes the XOR function. Show that there is no directed acyclic graph G such
that Id−sep(G) = I(p).

6. Consider the following two networks:
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Two networks G, G′ are I-equivalent if their structures encode exactly the same indepen-
dence statements, i.e. I(G) = I(G′). For each of the above two networks, determine
whether there can be any other Bayesian network that is I-equivalent to it. Justify your
answer, listing all of the I-equivalent Bayesian networks (if any).

7. For this question, you will use SamIam: Sensitivity Analysis, Modeling, Inference
and More, which is a free tool for inference using graphical models. The installation files,
installation instructions and documentation are available at:

http://reasoning.cs.ucla.edu/samiam/

Note: On some systems, when you first launch SamIam, you may not be able to create
new files or load existing network files. Follow these steps to resolve the issue:
- Under the Preferences menu, go to Preferences.
- Go to Global tab.
- Change ‘User interface look and feel’ to ‘Nimbus’.

Consider the following Bayesian network structure:
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The description of the nodes is given in the following table:

Node Values Description
Forecast {WillRain, WillNotRain} Prediction of whether it will rain or not
Umbrella {Yes, No} Whether you are carrying an umbrella along or not
Rain {Yes, No} Whether it actually rains or not
Sprinkler {On, Off} Whether the sprinkler was On or Off last night
Drenched {Yes, No} Whether you get drenched in the rain
WetGrass {Yes, No} Whether the grass is wet or not
Cold {Yes, No} Whether you catch cold or not

For the above network, answer the following questions using SamIam. You should use the
“Shenoy-Shafer” inference algorithm, which performs exact inference. It’s a good idea to
set monitors on all of the variables (these show you the nodes’ marginal probabilities), so
that you can watch the effect on all of the variables of any changes that you make.

(a) After inputing the above network into SamIam, construct conditional probability
distribution (CPD) tables for each of the nodes, assigning probabilities to events that
agree with intuition. Include a print out of all of the CPD tables in your solutions,
and use these CPD tables to answer the below questions.

(b) Perturb the CPD of Forecast and observe how the marginal probability of Cold

changes. Give the initial and final CPDs of Forecast and the corresponding marginal
probabilities for Cold. Explain your observations intuitively.

(c) Given that you observe Cold=Yes, how does the probability of Rain change (that
is, compare P(Rain|Cold=Yes) with P(Rain))? Give the initial and final probability
distributions of rain (P(Rain) and P(Rain|Cold=Yes)). Explain intuitively.

(d) Given that you observe that the grass is wet, how does the probability of cold change?
What about if the grass is observed not to be wet? Give the initial and final marginal
probabilities for Cold in both cases. Explain the change intuitively. Mention the
active trail(s) which allow flow of inference in this scenario, i.e. the path(s) that the
ball travels to get from Cold to WetGrass using the Bayes Ball algorithm.

(e) Given that we observe evidence that the sprinkler was off, how does the probability of
cold change? What if, in addition, we observe that the grass is wet? Give the initial
and final marginal distributions for Cold in each case. Explain your observations
using terminology of Bayesian networks. Also give an intuitive explanation.

(f) Modify your CPTs to represent an almost perfect forecast (that is, P(Rain=Yes
|Forecast=WillRain)≈ 1.0, P(Rain=No | Forecast = WillNotRain)≈ 1.0, P(Umbrella=Yes
| Forecast=WillRain) ≈ 1.0). How does this modification change the relation between
Rain and Cold? Explain intuitively. Make sure you test your theory by setting evi-
dence on Rain and seeing its influence on Cold.


