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Inference and Representation, Fall 2015

Problem Set 2: Undirected graphical models & Modeling exercise
Due: Friday, Oct. 2, 2015 at 5pm (as a PDF document uploaded in NYU Classes.)

Important: See problem set policy on the course web site.

1. Recall that an Ising model is given by the distribution

p(x1, · · · , xn) =
1

Z
exp

( ∑
(i,j)∈E

wi,jxixj −
∑
i∈V

uixi

)
, (1)

where the random variables Xi ∈ {−1,+1}. Related to the Ising model is the Boltzmann
machine, which is parameterized the same way (i.e., using Eq. 1), but which has variables
Xi ∈ {0, 1}. Here we get a non-zero contribution to the energy (i.e. the quantity in the
parentheses in Eq. 1) from an edge (i, j) only when Xi = Xj = 1.

Show that a Boltzmann machine distribution can be rewritten as an Ising model. More
specifically, given parameters ~w, ~u corresponding to a Boltzmann machine, specify new
parameters ~w′, ~u′ for an Ising model and prove that they give the same distribution p(X)
(assuming the state space {0, 1} is mapped to {−1,+1}).

2. Give a procedure to convert any Markov network on discrete variables into a pairwise
Markov random field. In particular, given a distribution p(X), specify a new distribution
p′(X,Y) which is a pairwise MRF, such that p(x) =

∑
y p
′(x,y), where Y are any new

variables added.

Clarification: Assume that the input is specified as full tables specifying the value of the
potential for every assignment to the variables for each potential. The new pairwise MRF
must have a description which is polynomial in the size of the original MRF.

Hint: First consider a simple case, such as a MRF on 3 binary variables with a single
potential function for the 3 variables, i.e. p(X) ∝ ψ123(X1, X2, X3). Introduce a new
variable Y with 23 = 8 states and let p′(X, Y ) ∝ ψY (Y )ψ1Y (X1, Y )ψ2Y (X2, Y )ψ3Y (X3, Y ).
Figure out how to set the new potential functions ψY (Y ), ψ1Y (X1, Y ), ψ2Y (X2, Y ) and
ψ3Y (X3, Y ) so as to have p(x) =

∑
y p
′(x, y) for all assignments x.

3. Exponential families (see Chap. 9). Probability distributions in the exponential family
have the form:

p(x; η) = h(x) exp{η · f(x)− lnZ(η)}

for some scalar function h(x), vector of functions f(x) = (f1(x), . . . , fd(x)), canonical
parameter vector η ∈ Rd (often referred to as the natural parameters), and Z(η) a constant
(depending on η) chosen so that the distribution normalizes.

(a) Determine which of the following distributions are in the exponential family, exhibiting
the f(x), Z(η), and h(x) functions for those that are.

i. N(µ, I)—multivariate Gaussian with mean vector µ and identity covariance ma-
trix.
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ii. Dir(α)—Dirichlet with parameter vector α = (α1, α2, . . . , αK) (see Sec. 2.5.4).

iii. log-Normal distribution—the distribution of Y = exp(X), where X ∼ N(0, σ2).

iv. Boltzmann distribution—an undirected graphical model G = (V,E) involving
a binary random vector X taking values in {0, 1}n with distribution p(x) ∝
exp

{∑
i uixi +

∑
(i,j)∈E wi,jxixj

}
.

(b) Conditional models. One can also talk about conditional distributions being in the
exponential family, being of the form:

p(y | x; η) = h(x,y) exp{η · f(x,y)− lnZ(η,x)}.

The partition function Z now depends on x, the variables that are conditioned on.
Let Y be a binary variable whose conditional distribution is specified by the logistic
function,

p(Y = 1 | x;α) =
1

1 + e−α0−
∑n

i=1 αixi

Show that this conditional distribution is in the exponential family.

4. Conjugacy and Bayesian prediction (generalization of Bernoulli ex. from 9.2.5.5)

(a) Let θ ∼ Dir(α). Consider discrete random variables (X1, X2, . . . , XN ), where Xi ∼
Cat(θ) for each i (thus the Xi are conditionally independent of one another given θ).
Show that the posterior p(θ | x1, . . . , xN , α) is given by Dir(α′), where

α′k = αk +

N∑
i=1

1[xi = k].

This property, that the posterior distribution p(θ | x) is in the same family as the
prior distribution p(θ), is called conjugacy. The Dirichlet distribution (see Sec. 2.5.4)
is the conjugate prior for the Categorical distribution. Every distribution in the
exponential family has a conjugate prior. For example, the conjugate prior for the
mean of a Gaussian distribution can be shown to be another Gaussian distribution.

(b) Now consider a random variable Xnew ∼ Cat(θ) that is assumed conditionally inde-
pendent of (X1, X2, . . . , XN ) given θ. Compute:

p(xnew | x1, x2, . . . , xN , α)

by integrating over θ.

Hint: Your result should take the form of a ratio of gamma functions.

This is called Bayesian prediction because we put a prior distribution over the pa-
rameters θ (in this case, a Dirichlet) and are thus able to take into consideration our
initial uncertainty over (and prior knowledge of) the parameters together with the
evidence we observed (samples x1, . . . , xN ) when giving our predictions for xnew.
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5. In this question, you will be using PyMC3, a framework for probabilistic programming.
Begin by reading the “Getting started” guide1 and Chapter 1 of the book Probabilistic
Programming and Bayesian Methods for Hackers.2

A PyMC3 environment has been set up on CIMS compute nodes (students who did not
already have a CIMS account should have received an e-mail on Tuesday to their NYU e-
mail address with access information). To use PyMC3 on the CIMS machines (specifically,
we recommend using the crunchy machines3), first run the following command:

module load python-2.7

Afterward, you can run any Python program using PyMC3 by importing pymc3.

First, run the examples discussed in the above reading, and experiment with what happens
if you change the models and parameters (this is simply warm-up; do not hand in).

This question will involve working with latent variable models. We will provide some data,
and you have to model it as a Bayesian network with hidden (unobserved) parameters. You
will assign prior distributions over these hidden parameters and use PyMC3’s Metropolis4

function that takes the observed data and the probabilistic model and generates samples
that estimate the posterior distributions of the latent variables (in this case, the hidden
parameters). You can essentially treat Metropolis function as a black-box; details will
be covered in Lecture 6. The summary function in PyMC3 reports the mean, standard
deviation and quantiles for all parameters.

Using the ideas from the following examples,

• Example 1: Coal mining disasters case study

• Example 2: Text messages data analysis example

• Example 3: Example code for arbitrary determinsitics

analyse the data in text data.csv, a sythetic dataset provided with the assignment, using
PyMC3’s Metropolis function for approximate inference. Unlike in Example 2 above, in
this dataset there are two switchpoints. Can you find them?

Find the points where the distribution of text message count changes, and the average rate
of text messages in each of these regions with different distribution. Report the results
from the summary function and briefly describe your findings.

1https://pymc-devs.github.io/pymc3/getting_started/
2http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/

blob/master/Chapter1_Introduction/Chapter1.ipynb – note, this tutorial uses PyMC2, which has slightly
different syntax from PyMC3

3https://www.cims.nyu.edu/webapps/content/systems/resources/computeservers
4One of the examples uses the Slice function from PyMC3, which is similar to Metropolis, except that it

works only for continuous variables.

https://pymc-devs.github.io/pymc3/getting_started/#case-study-2-coal-mining-disasters
http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb#Example:-Inferring-behaviour-from-text-message-data
https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/disaster_model_arbitrary_deterministic.py
https://pymc-devs.github.io/pymc3/getting_started/
http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb
http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb
https://www.cims.nyu.edu/webapps/content/systems/resources/computeservers

