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Inference and Representation, Fall 2015

Problem Set 5: Structure learning & Gaussian processes
Due: Tuesday, December 1, 2015 at 3pm (uploaded to NYU Classes.)

Your submission should include a PDF file called “solutions.pdf” with your written
solutions, separate output files, and all of the code that you wrote.

Important: See problem set policy on the course web site.

For this assignment, you are allowed to use basic graph packages (e.g., for representing and work-
ing with undirected graphs, or for finding the maximum spanning tree), but are not permitted
to use any machine learning, graphical models, or probabilistic inference packages.

1. Tree factorization. Let T denote the edges of a tree-structured pairwise Markov random
field with vertices V . For the special case of trees, prove that any distribution pT (x)
corresponding to a Markov random field over T admits a factorization of the form:

pT (x) =
∏

(i,j)∈T

pT (xi, xj)

pT (xi)pT (xj)

∏
j∈V

pT (xj), (1)

where pT (xi, xj) and pT (xi) denote pairwise and singleton marginals of the distribution
pT , respectively.

Hint: consider the Bayesian network where you choose an arbitrary node to be a root
and direct all edges away from the root. Show that this is equivalent to the MRF. Then,
looking at the BN’s factorization, reshape it into the required form.

2. Chow-Liu algorithm. When trying to do object detection from computer images, context
can be very helpful. For example, if “car” and “road” are present in an image, then it
is likely that “building” and “sky” are present as well (see Figure 1). In recent work, a
tree-structured Markov random field (see Figure 2) was shown to be particularly useful
for modeling the prior distribution of what objects are present in images and using this to
improve object detection [1].

You will replicate some of the results from [1] (it is not necessary to read this paper
to complete this assignment). Specifically, you will implement the Chow-Liu algorithm

Figure 1: Using context within object detection for computer vision. [1]
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Figure 7. Model learned for SUN 09. Red edges denote negative correlation between classes. The thickness of each edge represents the

strength of the link.
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Table 1. Average precision-recall. Baseline) baseline detector [5];

Gist) baseline and gist [20]; Context) our context model; [4]) re-

sults from [4] (the baseline in [4] is the same as our baseline, but

performances slightly differ); Bound) Maximal APR that can be

achieved given current max recall.

the baseline detector and not for learning the tree model.

In this experiment we use 107 object detectors. These
detectors span from regions (e.g., road, sky, buildings) to
well defined objects (e.g., car, sofa, refrigerator, sink, bowl,
bed) and highly deformable objects (e.g., river, towel, cur-
tain). The database contains 4317 test images. Objects have
a large range of difficulties due to variations in shape, but
also in sizes and frequencies. The distribution of objects in
the test set follows a power law (the number of instances for
object k is roughly 1/k) as shown in Figure 2.

Context learned from training images Figure 7 shows
the learned tree relating the 107 objects. A notable differ-
ence from the tree learned for PASCAL 07 (Figure 4) is that
the proportion of positive correlations is larger. In the tree
learned from PASCAL 07, 10 out of 19 edges, and 4 out
of the top 10 strongest edges have negative relationships.
In contrast, 25 out of 106 edges and 7 out of 53 (≈ 13%)
strongest edges in the SUN tree model have negative rela-
tionships. In PASCAL 07, most objects are related by re-
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Figure 5. Image annotation results for PASCAL 07 and SUN 09.

a-b) Percentage of images in which the top N most confident de-

tections are all correct. The numbers on top of the bars indicate

the number of images that contain at least N ground-truth object

instances. c-d) Percentage of images in which the top N most con-

fident object presence predictions are all correct. The numbers on

top of the bars indicate the number of images that contain at least

N different ground-truth object categories.
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Figure 6. Improvement of context model over the baseline. Object

categories are sorted by the improvement in the localization task.

pulsion because most images contain only few categories.
In SUN 09, there is a lot more opportunities to learn posi-
tive correlations between objects. From the learned tree, we
can see that some objects take the role of dividing the tree

Figure 2: Pairwise MRF of object class presences in images [1]. Red edges denote negative
correlations between classes. The thickness of each edge represents the strength of the link. You
will be learning this MRF in question 2(a).

(1968) for maximum likelihood learning of tree-structured Markov random fields [2]. See
also Murphy’s book Section 26.3 for a brief overview.

The goal of learning is to find the tree-structured distribution pT (x) that maximizes the
log-likelihood of the training data D = {x}:

max
T

max
θT

∑
x∈D

log pT (x; θT ).

Recall from Lecture 10 that for a fixed structure T , the maximum likelihood parameters
for a MRF have a property called moment matching, meaning that the learned distribution
will have marginals pT (xi, xj) equal to the empirical marginals p̂(xi, xj) computed from
the data D, i.e. p̂(xi, xj) = count(xi, xj)/|D| where count(xi, xj) is the number of data
points in D with Xi = xi and Xj = xj . Thus, using the factorization from Eq. 1, the
learning task is reduced to solving

max
T

∑
x∈D

log

 ∏
(i,j)∈T

p̂(xi, xj)

p̂(xi)p̂(xj)

∏
j∈V

p̂(xj)

 .
We can simplify the quantity being maximized over T as follows (let N = |D|):

=
∑
x∈D

( ∑
(i,j)∈T

log

[
p̂(xi, xj)

p̂(xi)p̂(xj)

]
+
∑
j∈V

log [p̂(xj)]
)

=
∑

(i,j)∈T

∑
x∈D

log

[
p̂(xi, xj)

p̂(xi)p̂(xj)

]
+
∑
j∈V

∑
x∈D

log [p̂(xj)]

=
∑

(i,j)∈T

∑
xi,xj

Np̂(xi, xj) log

[
p̂(xi, xj)

p̂(xi)p̂(xj)

]
+
∑
j∈V

∑
xi

Np̂(xi) log [p̂(xj)]

= N
( ∑

(i,j)∈T

Ip̂(Xi, Xj)−
∑
j∈V

Hp̂(Xj)
)
,

where Ip̂(Xi, Xj) =
∑
xi,xj

p̂(xi, xj) log
p̂(xi,xj)
p̂(xi)p̂(xj)

is the empirical mutual information of

variables Xi and Xj , and Hp̂(Xi) is the empirical entropy of variable Xi. Since the entropy
terms are not a function of T , these can be ignored for the purpose of finding the maximum
likelihood tree structure. We conclude that the maximum likelihood tree can be
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obtained by finding the maximum-weight spanning tree in a complete graph
with edge weights Ip̂(Xi, Xj) for each edge (i, j).

The Chow-Liu algorithm then consists of the following two steps:

(a) Compute each edge weight based on the empirical mutual information.

(b) Find a maximum spanning tree (MST) via Kruskal or Prim’s Algorithm.

(c) Output a pairwise MRF with edge potentials φij(xi, xj) =
p̂(xi,xj)
p̂(xi)p̂(xj)

for each (i, j) ∈ T
and node potentials φi(xi) = p̂(xi).

We have one random variable Xi ∈ {0, 1} for each object type (e.g., “car” or “road”)
specifying whether this object is present in a given image. For this problem, you are
provided with a matrix of dimension N ×M where N = 4367 is the number of images
in the training set and M = 111 is the number of object types. This data is in the file
“chowliu-input.txt”, and the file “names.txt” specifies the object names corresponding to
each column.

Implement the Chow-Liu algorithm described above to learn the maximum likelihood tree-
structured MRF from the data provided. Your code should output the MRF in the standard
UAI format described here:

http://www.hlt.utdallas.edu/~vgogate/uai14-competition/modelformat.html

3. A major computational burden in using Gaussian Processes is inverting the covariance
matrix, which is necessary for both parameter inference and for prediction. Is it possible
to have a “precision function” p(xi, xj) that provides the (i, j)th entry of the precision
matrix (inverse covariance matrix), analogous to the covariance function k(xi, xj) which
takes as input the data points xi and xj and computes the (i, j)th entry of the covariance
matrix? Please explain why or why not.

4. For four different covariance functions, make side-by-side plots showing for different pa-
rameter values (a) the shape of the covariance function, and (b) samples from the Gaussian
process with this covariance functions. Make sure to include both compact-/non-compactly
supported and differentiable/non-differentiable covariance functions. (You should write
code to do this; do not use an existing Gaussian process software package.)
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