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Inference and Representation, Fall 2015

Problem Set 5: Structure learning & Gaussian processes
Due: Tuesday, December 1, 2015 at 3pm (uploaded to NYU Classes.)

Your submission should include a PDF file called “solutions.pdf” with your written
solutions, separate output files, and all of the code that you wrote.

Important: See problem set policy on the course web site.

For this assignment, you are allowed to use basic graph packages (e.g., for representing and work-
ing with undirected graphs, or for finding the maximum spanning tree), but are not permitted
to use any machine learning, graphical models, or probabilistic inference packages.

1. Tree factorization. Let T" denote the edges of a tree-structured pairwise Markov random
field with vertices V. For the special case of trees, prove that any distribution pp(x)
corresponding to a Markov random field over T' admits a factorization of the form:

pri = ] Prlemi) 7 [ e, (1)

iaer pr(z)pr(z;) i€y

where pr(z;,x;) and pr(x;) denote pairwise and singleton marginals of the distribution
pr, respectively.

Hint: consider the Bayesian network where you choose an arbitrary node to be a root
and direct all edges away from the root. Show that this is equivalent to the MRF. Then,
looking at the BN’s factorization, reshape it into the required form.

2. Chow-Liu algorithm. When trying to do object detection from computer images, context
can be very helpful. For example, if “car” and “road” are present in an image, then it
is likely that “building” and “sky” are present as well (see Figure . In recent work, a
tree-structured Markov random field (see Figure [2) was shown to be particularly useful
for modeling the prior distribution of what objects are present in images and using this to
improve object detection [IJ.

You will replicate some of the results from [I] (it is not necessary to read this paper
to complete this assignment). Specifically, you will implement the Chow-Liu algorithm
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Figure 1: Using context within object detection for computer vision. [1]
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Figure 2: Pairwise MRF of object class presences in images [I]. Red edges denote negative
correlations between classes. The thickness of each edge represents the strength of the link. You
will be learning this MRF in question 2(a).

(1968) for maximum likelihood learning of tree-structured Markov random fields [2]. See
also Murphy’s book Section 26.3 for a brief overview.

The goal of learning is to find the tree-structured distribution pr(x) that maximizes the
log-likelihood of the training data D = {x}:

mj@x max Z log pr(x; 0r).
x€D

Recall from Lecture 10 that for a fixed structure 7', the maximum likelihood parameters
for a MRF have a property called moment matching, meaning that the learned distribution
will have marginals pr(z;,2;) equal to the empirical marginals p(z;,2;) computed from
the data D, i.e. p(z;,x;) = count(x;,x;)/|D| where count(z;,z;) is the number of data
points in D with X; = x; and X; = z;. Thus, using the factorization from Eq. E the
learning task is reduced to solving

We can simplify the quantity being maximized over T as follows (let N = |D|):
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where Ip(X;, X;) = 3, ., b(xi, 7;)log #ﬁf;j) is the empirical mutual information of
variables X; and X;, and H;(X;) is the empirical entropy of variable X;. Since the entropy
terms are not a function of 7', these can be ignored for the purpose of finding the maximum

likelihood tree structure. We conclude that the maximum likelihood tree can be
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obtained by finding the maximum-weight spanning tree in a complete graph
with edge weights I;(X;, X,) for each edge (i, ).

The Chow-Liu algorithm then consists of the following two steps:

(a) Compute each edge weight based on the empirical mutual information.

(b) Find a maximum spanning tree (MST) via Kruskal or Prim’s Algorithm.
(c¢) Output a pairwise MRF with edge potentials ¢;;(z;, z;) = % for each (i,5) € T
and node potentials ¢;(x;) = p(z;).

We have one random variable X; € {0,1} for each object type (e.g., “car” or “road”)

specifying whether this object is present in a given image. For this problem, you are
provided with a matrix of dimension N x M where N = 4367 is the number of images
in the training set and M = 111 is the number of object types. This data is in the file
“chowliu-input.txt”, and the file “names.txt” specifies the object names corresponding to
each column.

Implement the Chow-Liu algorithm described above to learn the maximum likelihood tree-
structured MRF from the data provided. Your code should output the MRF in the standard
UAI format described here:

http://www.hlt.utdallas.edu/~vgogate/uaild-competition/modelformat.html

3. A major computational burden in using Gaussian Processes is inverting the covariance
matrix, which is necessary for both parameter inference and for prediction. Is it possible
to have a “precision function” p(z;,z;) that provides the (7, j)th entry of the precision
matrix (inverse covariance matrix), analogous to the covariance function k(x;,x;) which
takes as input the data points x; and x; and computes the (4, j)th entry of the covariance
matrix? Please explain why or why not.

4. For four different covariance functions, make side-by-side plots showing for different pa-
rameter values (a) the shape of the covariance function, and (b) samples from the Gaussian
process with this covariance functions. Make sure to include both compact-/non-compactly
supported and differentiable/non-differentiable covariance functions. (You should write
code to do this; do not use an existing Gaussian process software package.)
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