Inference and Representation, Fall 2015

Problem Set 6: Variational inference

Due: Tuesday, December 8, 2015 at 3pm (uploaded to NYU Classes.)

Your submission should include a PDF file called "solutions.pdf" with your written solutions, separate output files, and all of the code that you wrote. Important: See problem set policy on the course web site.

Latent Dirichlet allocation (LDA) is a probabilistic model for discovering topics in sets of documents [1]. The generative model is as follows:

- For each document, $m = 1, \ldots, M$
 - 1. Draw topic probabilities $\theta_m \sim p(\theta|\alpha)$
 - 2. For each of the N words:
 - (a) Draw a topic $z_{mn} \sim p(z|\theta_m)$
 - (b) Draw a word $w_{mn} \sim p(w|z_{mn},\beta)$,

where $p(\theta|\alpha)$ is a Dirichlet distribution, and where $p(z|\theta_m)$ and $p(w|z_{mn},\beta)$ are Multinomial distributions. Treat α and β as fixed hyperparameters. Note that β is a matrix, with one column per topic, and the Multinomial variable z_{mn} selects one of the columns of β to yield multinomial probabilities for w_{mn} .

Figure 1: Graphical structure of the LDA model.

1. Derive a mean-field algorithm for inference in the LDA model by minimizing the KLdivergence $D(q_{\gamma_m,\phi_m}(\theta, \mathbf{z})||p(\theta, \mathbf{z} | \mathbf{w}))$ with respect to the variational parameters ϕ and γ , where $q_{\gamma,\phi}(\theta, \mathbf{z}) = q_{\gamma}(\theta) \prod_n q_{\phi_n}(z_n), q_{\gamma}(\theta)$ is a Dirichlet, and the $q_{\phi_n}(z_n)$ are Multinomial. For this question, it is permissible to consult external resources – such as the LDA paper [1] – to help you figure out the derivation (please cite any sources you used). In particular, you will probably want to use the fact that:

$$\mathbf{E}_{q_{\gamma}}\left[\log \theta_{i}\right] = \Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{k} \gamma_{j}).$$

Important: show all steps of your derivation.

2. Implement the inference algorithm that you derived. You will then run your mean-field algorithm to find the posterior topic distribution θ for an input document, and compare to your results of running Gibbs and collapsed Gibbs sampling from Problem Set 4.

We have previously learned the parameters (i.e., α and β) of a 200-topic LDA model on a corpus containing thousands of abstracts of papers from the top machine learning conference, Neural Information Processing Systems (NIPS). Your task will be to infer the topic distribution for a new document.

We have provided the following data files (same as in Problem Set 4):

- alphas.txt, which has on each line for topic *i*: *i*, α_i , and a list of the most likely words for this topic,
- abstract_*.txt, with the words of document m (i.e., the abstract),
- abstract_*.txt.ready, with, in order,
 - the number of topics k,
 - $-\alpha_i$, for $i = 1, \ldots, k$,
 - for every word w_n , the word itself followed by $\beta_{w_n,i}$ for $i = 1, \ldots, k$.

Note that your code only needs to read in the abstract_*.txt.ready files – the alphas.txt and abstract_*.txt files are provided for your reference only.

For each of the abstracts,

- (a) Plot the l₂ error on your estimate of E[θ] as a function of the number of iterations for each of the three algorithms (mean-field, Gibbs, collapsed Gibbs). As in Problem Set 4, use E[θ] computed using collapsed Gibbs sampling with a high number of iterations (e.g. 10⁴) as the ground truth.
- (b) Which algorithm converges fastest? Do all algorithms return an accurate estimate of $E[\theta_m]$ when run for a sufficiently long time? Explain your answers.

Only include in your solutions the plot for the data file NIPS2008_0517. The remaining files are provided for your own experimentation.

You may use the programming language of your choice. We recommend first checking that packages are available to (1) sample from a Dirichlet distribution, and (2) compute the Digamma function $\Psi(x)$, as these will simplify your coding. For example, see Python's numpy.random.mtrand.dirichlet and scipy.special.psi.

References

 David M. Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. JMLR, 3:993– 1022, 2003.