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Welcome!

Instructor: David Sontag, dsontag@cs.nyu.edu
Lab instructor: Rachel Hodos, hodos@cims.nyu.edu
Grader: Prasoon Goyal, pgoyal@nyu.edu
Lecture: Tue 5:10-7pm WWH 102
Lab: Wed 7:10-8pm WWH 102
Attendance required for both lab and lecture (may be taken
periodically)
Lab material will be complementary to main lectures
Slides and additional info posted on website (TBD)
Python / pymc3
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About Me

5th year PhD student in Computational Biology
Based in math department
Research: computational drug discovery
Will draw many examples from computational biology
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Random Variables

Wikipedia: A variable whose values are subject to
variations due to chance.
Examples:

Discrete or continuous
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Probability Distributions

Every random variable has some probability distribution
(may be unknown)
Describes the likelihood that a random variable will take a
certain value (or set of values)
Discrete variables: probability mass function (pmf):∑

x

p(x) = 1

Continuous variables: probability density functions (pdf):∫
x

p(x)dx = 1

In both cases, p(x) >= 0 for all x.
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Examples of Probability Distributions

Discrete:
Binomial, Bin(p), coin toss
Multinomial, Multi(θ1, θ2, . . . , θk ), dice roll
Poisson, Poisson(λ), number of events in a given time
window, where each event occurs with average rate λ

Continuous:
Uniform, e.g. U[a,b]
Gaussian or Normal, N(µ, σ2), white noise

"Standard normal" = N(0, 1)
Exponential, exp(λ), waiting times

Theoretical vs. empirical distributions
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Expectation

Also called mean, average, first moment
Defined as

E(X ) =
∑

x

xp(x)

Continuous: ∫
x

xp(x)dx

Expectation of empirical distribution is what we’re used to:

1
N

N∑
i=1

xi

Linearity of expectation:

E(aX + b) = aE(X ) + b
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Multivariate Distributions

Often want to understand relationships between variables
Example: X = "sprinkler on", Y = "raining"

This is an example of a multivariate or joint distribution, i.e.
p(X ,Y ) or more generally p(X1,X2, . . . ,Xn)

For discrete variables, simply defined as

p(X1 = x1, . . . ,Xn = xn) :=

p(X1 = x1 ∩ . . . ∩ Xn = xn)

Examples:
Discrete: series of coin tosses, rolling a pair of dice
Continuous: Multivariate Gaussian, Dirichlet
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The Multivariate Gaussian Distribution

One variable:

p(x ;µ, σ) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
Multiple variables:

p(x;µ,Σ) =
1

(2π)n/2 det(Σ)1/2 exp
(
−1

2
(x − µ)T Σ−1(x − µ)

)
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Marginalization

Suppose we have joint distribution p(X1, . . . ,Xn) and we
want to know p(Xi = xi)

Example: from p(X,Y), what is p(Y = raining)?

Answer: .15 + .01 = .16
More generally:

p(Xi = xi) =
∑
x1

∑
x2

· · ·
∑
xi−1

∑
xi+1

∑
xn

p(x1, . . . , xn)

Doing this for each xi gives us the marginal distribution
over Xi
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Conditioning

What if we want to know the distribution of X when Y is set
to a particular value?
Example: from p(X,Y), what is p(sprinkler on | raining)?

Answer: .01 / (.15 + .01) = 1/16
More generally:

p(x |y) =
p(x , y)

p(y)

Note that this is a univariate distribution, defined for each
value of y
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Independence

Intuitively: two variables are independent if they are
unrelated
One definition: X ⊥ Y means that for all x and y ,
p(x , y) = p(x)p(y)

Examples: a sequence of coin tosses
Why do we care?

Simple representation of joint distribution
Tells you where not to look when building predictive models
But, if everything were independent, we couldn’t make any
predictions, and machine learning wouldn’t exist...
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Two Important Rules

Chain Rule:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, x2, . . . , xn−1)

Intuition: generalizes conditioning on a single variable

Bayes’ Rule:

p(x |y) =
p(y |x)p(x)

p(y)

Basis of Bayesian statistics
Useful when p(y |x) is more natural to measure or estimate
than p(x |y)
Proof: from chain rule and definition of conditional
distribution
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Questions?

Probability review:
http://cs229.stanford.edu/section/cs229-prob.pdf
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