Inference and Representation

Rachel Hodos

New York University

Lab 1, September 2, 2015

Rachel Hodos Lab 1: Inference and Representation

・ロト ・ 理 ト ・ ヨ ト ・

2

Welcome!

- Instructor: David Sontag, dsontag@cs.nyu.edu
- Lab instructor: Rachel Hodos, hodos@cims.nyu.edu
- Grader: Prasoon Goyal, pgoyal@nyu.edu
- Lecture: Tue 5:10-7pm WWH 102
- Lab: Wed 7:10-8pm WWH 102
- Attendance required for both lab and lecture (may be taken periodically)
- Lab material will be complementary to main lectures
- Slides and additional info posted on website (TBD)
- Python / pymc3

ヘロト 人間 とくほ とくほ とう

э.

About Me

- 5th year PhD student in Computational Biology
- Based in math department
- Research: computational drug discovery
- Will draw many examples from computational biology

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Random Variables

- Wikipedia: A variable whose values are subject to variations due to chance.
- Examples:

Discrete or continuous

ヘロト ヘアト ヘビト ヘビト

ъ

Probability Distributions

- Every random variable has some probability distribution (may be unknown)
- Describes the likelihood that a random variable will take a certain value (or set of values)
- Discrete variables: probability mass function (pmf):

٠

$$\sum_{x} p(x) = 1$$

Continuous variables: probability density functions (pdf):

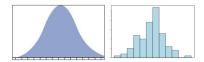
$$\int_{x} p(x) dx = 1$$

• In both cases, p(x) >= 0 for all x.

(* (E)) * (E))

Examples of Probability Distributions

- Discrete:
 - Binomial, Bin(p), coin toss
 - Multinomial, Multi $(\theta_1, \theta_2, \ldots, \theta_k)$, dice roll
 - Poisson, Poisson(λ), number of events in a given time window, where each event occurs with average rate λ
- Continuous:
 - Uniform, e.g. U[a, b]
 - Gaussian or Normal, $N(\mu, \sigma^2)$, white noise
 - "Standard normal" = N(0, 1)
 - Exponential, $exp(\lambda)$, waiting times
- Theoretical vs. empirical distributions



Expectation

- Also called mean, average, first moment
- Defined as

$$\mathsf{E}(X) = \sum_{x} x p(x)$$

• Continuous:

$$\int_{X} xp(x) dx$$

Expectation of empirical distribution is what we're used to:

$$\frac{1}{N}\sum_{i=1}^N x_i$$

• Linearity of expectation:

$$\mathsf{E}(aX+b)=a\mathsf{E}(X)+b$$

★ E ► ★ E ►

ъ

Multivariate Distributions

- Often want to understand relationships between variables
- Example: X = "sprinkler on", Y = "raining"

p(X,Y)	sprinkler off	sprinkler on
not raining	.6	.24
raining	.15	.01

- This is an example of a *multivariate* or *joint distribution*, i.e. p(X, Y) or more generally $p(X_1, X_2, ..., X_n)$
- For discrete variables, simply defined as

$$p(X_1 = x_1, \dots, X_n = x_n) :=$$

$$p(X_1 = x_1 \cap \dots \cap X_n = x_n)$$

- Examples:
 - Discrete: series of coin tosses, rolling a pair of dice
 - Continuous: Multivariate Gaussian, Dirichlet

Probability Review

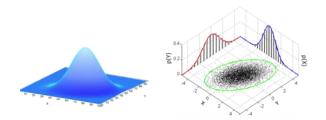
The Multivariate Gaussian Distribution

• One variable:

$$p(x; \mu, \sigma) = rac{1}{\sigma\sqrt{2\pi}} exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

Multiple variables:

$$p(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} \det(\boldsymbol{\Sigma})^{1/2}} \exp\left(-\frac{1}{2}(x-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(x-\boldsymbol{\mu})\right)$$



Marginalization

- Suppose we have joint distribution p(X₁,..., X_n) and we want to know p(X_i = x_i)
- Example: from p(X,Y), what is p(Y = raining)?

p(X,Y)	sprinkler off	sprinkler on
not raining	.6	.24
raining	.15	.01

- Answer: .15 + .01 = .16
- More generally:

$$p(X_i = x_i) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \sum_{x_n} p(x_1, \dots, x_n)$$

 Doing this for each x_i gives us the marginal distribution over X_i

Conditioning

- What if we want to know the distribution of X when Y is set to a particular value?
- Example: from p(X,Y), what is p(sprinkler on | raining)?

p(X,Y)	sprinkler off	sprinkler on
not raining	.6	.24
raining	.15	.01

- Answer: .01 / (.15 + .01) = 1/16
- More generally:

$$p(x|y) = rac{p(x,y)}{p(y)}$$

 Note that this is a univariate distribution, defined for each value of y

Independence

- Intuitively: two variables are independent if they are unrelated
- One definition: $X \perp Y$ means that for all x and y, p(x, y) = p(x)p(y)
- Examples: a sequence of coin tosses
- Why do we care?
 - Simple representation of joint distribution
 - Tells you where not to look when building predictive models
 - But, if everything were independent, we couldn't make any predictions, and machine learning wouldn't exist...

ヘロト ヘアト ヘビト ヘビト

Two Important Rules

Chain Rule:

$$p(x_1,\ldots,x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\ldots p(x_n|x_1,x_2,\ldots,x_{n-1})$$

• Intuition: generalizes conditioning on a single variable

Bayes' Rule:

$$p(x|y) = rac{p(y|x)p(x)}{p(y)}$$

- Basis of Bayesian statistics
- Useful when p(y|x) is more natural to measure or estimate than p(x|y)
- Proof: from chain rule and definition of conditional distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 Probability review: http://cs229.stanford.edu/section/cs229-prob.pdf

・ロト ・ 理 ト ・ ヨ ト ・

æ 👘