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Welcome!

@ Instructor: David Sontag, dsontag@cs.nyu.edu

@ Lab instructor: Rachel Hodos, hodos@cims.nyu.edu
@ Grader: Prasoon Goyal, pgoyal@nyu.edu

@ Lecture: Tue 5:10-7pm WWH 102

@ Lab: Wed 7:10-8pm WWH 102

@ Attendance required for both lab and lecture (may be taken
periodically)

@ Lab material will be complementary to main lectures
@ Slides and additional info posted on website (TBD)
@ Python / pymc3
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About Me

@ 5th year PhD student in Computational Biology

@ Based in math department

@ Research: computational drug discovery

@ Will draw many examples from computational biology
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Probability Review

Random Variables

@ Wikipedia: A variable whose values are subject to
variations due to chance.

@ Examples:

@ Discrete or continuous
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Probability Review

Probability Distributions

@ Every random variable has some probability distribution
(may be unknown)

@ Describes the likelihood that a random variable will take a
certain value (or set of values)

@ Discrete variables: probability mass function (pmf):
> p(x) =1
X
@ Continuous variables: probability density functions (pdf):
/ p(x)dx =1
X

@ In both cases, p(x) >= 0 for all x.
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Probability Review

Examples of Probability Distributions

@ Discrete:

e Binomial, Bin(p), coin toss

e Multinomial, Multi(61, 62, . . ., 8¢), dice roll

e Poisson, Poisson()), number of events in a given time

window, where each event occurs with average rate A

@ Continuous:

e Uniform, e.g. Ula, b]

e Gaussian or Normal, N(u, o2), white noise

@ "Standard normal" = N(0,1)
e Exponential, exp()), waiting times

@ Theoretical vs. empirical distributions

k.
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Probability Review
Expectation

@ Also called mean, average, first moment

@ Defined as
E(X) =Y xp(x)
X
@ Continuous:
/xp(x)dx
X

@ Expectation of empirical distribution is what we'’re used to:
1N
N2
i=1
@ Linearity of expectation:
E(aX + b) = aE(X)+ b



Probability Review

Multivariate Distributions

@ Often want to understand relationships between variables
@ Example: X = "sprinkler on", Y = "raining"

6 24

|_raining |

.15 .01

@ This is an example of a multivariate or joint distribution, i.e.
p(X, Y) or more generally p(Xi, Xz, ..., Xn)

@ For discrete variables, simply defined as
p(X‘IZX‘],,Xn:Xn):

@ Examples:

o Discrete: series of coin tosses, rolling a pair of dice
e Continuous: Multivariate Gaussian, Dirichlet
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Probability Review

The Multivariate Gaussian Distribution

1 (x —p)?
o 27rexp<_ 202

@ One variable:

p(x; p,0) =

@ Multiple variables:

1 1 .
(@n)"72 det(x) /2 TP (‘2()( — )T (x - “)>

- frﬂ"l'w\{m”\

B >

p(X; p, X)) =

(x)d

+oo PR

Rachel Hodos Lab 1: Inference and Representation



Probability Review
Marginalization

@ Suppose we have joint distribution p(Xj, ..., X,) and we
want to know p(X; = x;)
@ Example: from p(X,Y), what is p(Y = raining)?

mm
not raining .6
.15 .01

@ Answer: .15 + .01 =.16
@ More generally:

DD %) IR

Xji—1 Xit1  Xn

@ Doing this for each x; gives us the marginal distribution
over X;
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Probability Review
Conditioning

@ What if we want to know the distribution of X when Y is set
to a particular value?

@ Example: from p(X,Y), what is p(sprinkler on | raining)?

MM
not ralnlng .6
.15 .01

@ Answer: .01/ (.15 +.01) =1/16
@ More generally:

p(x,y)
X =
(x1y) p(y)
@ Note that this is a univariate distribution, defined for each

value of y
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Probability Review
Independence

@ Intuitively: two variables are independent if they are
unrelated

@ One definition: X L Y means that for all x and y,
p(x,y) = p(x)p(y)

@ Examples: a sequence of coin tosses

@ Why do we care?

e Simple representation of joint distribution

e Tells you where not to look when building predictive models

e But, if everything were independent, we couldn’t make any
predictions, and machine learning wouldn'’t exist...
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Probability Review
Two Important Rules

@ Chain Rule:

p(X1, ..., Xn) = P(X1)P(X2[X1)P(X3|X1, X2) - . . P(Xn| X1, X2, . .. Xp—1)

e Intuition: generalizes conditioning on a single variable

@ Bayes’ Rule:
ply|x)p(x)

p(x|y) = oY)

e Basis of Bayesian statistics
e Useful when p(y|x) is more natural to measure or estimate

than p(x|y)
@ Proof: from chain rule and definition of conditional

distribution
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Probability Review
Questions?

@ Probability review:
http://cs229.stanford.edu/section/cs229-prob.pdf
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