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Exponential families and learning MRFs

Definition of exponential family

A distribution is in the exponential family if it can be written in
the following form:

p(x;n) = h(x)exp{n - f(x) —InZ(n)}
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Exponential families and learning MRFs

Why talk about the exponential family?

@ Most distributions you know are in the exponential family
@ Maximum entropy solutions (via moment matching)
@ Writing in this form can reveal new algorithms

@ All distributions in the exponential family have conjugate
distributions

@ Parametrizing in log-linear form can make learning the
parameters easier
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Exponential families and learning MRFs

Examples

(on chalkboard)
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Exponential families and learning MRFs

MLE for MRFs? Bad news...

@ The global normalization constant Z(6) kills decomposability:

oML =  argmax Iong(x; 0)
9 xeD
= arg mgxz (Z log ¢ (xc; 0) — log Z(G))
xeD c
= argmax (Zzlog mxc;e)) ~ |Dllog 2(6)
xeD ¢

@ The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

@ Solving for the parameters becomes much more complicated
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Exponential families and learning MRFs

..but wait, there’s hope!

oML —  arg max (Z Z log ¢c(Xc; 9)) — |D|log Z(0)

xcD ¢
= argmax (Z Z w - fc(xc)) — |D| log Z(w)
xeD ¢
= argmax w- (Z ch(xc)) — |D|log Z(w)
xeD ¢

@ The first term is linear in w

@ The second term is also a function of w, and we can
compute derivatives in the following way..
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Exponential families and learning MRFs

Derivative of log-partition function

The derivative of the log-partition function is equal to the expectation of the
sufficient statistic vector (i.e. the distribution's marginals):

8y InZ(n) = 8,1n Zexp{n -f(x)}

= m Zx:an, exp{n - f(x)}
- m Z exp{n - £(x)}8, - f(x)
erxp{n f(x)}i(x)

- Z% i(x) = Y P(X)fi(x) = Eplfi(x)]-
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Exponential families and learning MRFs

Log partition function is convex!

@ Similarly, 2nd derivatives are the 2nd-order moments (i.e.
the covariance matrix).

@ This is positive semi-definitive, which means that the
log-partition function is convex.

@ This means we can use any convex optimization algorithm!
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Exponential families and learning MRFs

Notes on moment matching

o o 1 5 .
p(%i, S wH ) = 57 D Ui = Riy x5 = %]
xeD

@ Yesterday we saw that the ML solution had the same
moments as our data

@ This does not mean we can (always) estimate the ML
parameters directly from the data

@ Tree-structured MRFs are a special case where we can
esimate the parameters from the moments (you will show
this in your HW)
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Gaussian Processes

What is a Gaussian Process?

@ A distribution over functions
@ Allows us to do Bayesian estimation of functions

@ A generalization of multivariate Gaussians to infinite
dimensional space

@ Provides explicit representation of uncertainty as a function
of input x
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Gaussian Processes

Definition of a Gaussian Process

The basic setup:
o Data set {(x;,¥),i=1,...,n}.
o Inputs x; € S C RP.
e Outputs y; € R.

xi ~ p(x)
vi=f(x)+e

€ < N(0,6?)

Definition

f is a Gaussian process if for any collection X = {x; € S,i =1,...,n},
f(x1)
L ~ N (u(X), K(X, X))
f(%n)
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Gaussian Processes

Regression using GP, noise-free

Interpolation /prediction at target locations:
o (Noise-free observations) Observe {(x;, f(x;)),i =1,..., n}.
o (Noisy observations) Observe {(x;,yi),i =1,...,n}.
o Want to predict f* = {f(x]), ..., f(x})} at x*.

f* XX~ N 0 , K(X*, X) K(X*,X**) Predit.:tion with
f 0 K(X*,X) K(X*,X*) noise-free

£, X, X" ~ N(K(x*, X)[K(X, X)), data

K(X*, X*) — K(X*, X)[K(X, x)]*lx(x,x*))
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Gaussian Processes

Regression using GP, general

Interpolation/prediction at target locations:
o (Noise-free observations) Observe {(x;, f(x;)),i=1,...,n}.
e (Noisy observations) Observe {(x;, y;),i = 1,...,n}.
o Want to predict f* = {f(x7),...,f(x})} at x*.

(1) x = (6) (k3 kxexd)) ] et
£116,X, X" ~ A (KX, X)K(X, X)), data
K(X™, X*) — K(X*, X)[K(X, x)]*IK(x,x*))

YY) xox o ((0) (KO %) +o2l, K(X,X*) Prediction
f* ’ 0/’ K(X*,X) K(X*, X*) with noisy
Foly, X, X ~ N (KX XK (X, X) +021,] 7y, data

K(X*, X*) — K(X*, X)[K(X, X) + gfl,,]—lk(x,x*))
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Gaussian Processes

Posterior over functions

Samples from the posterior
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Gaussian Processes

Latent GPs

@ Can generalize to case where y no longer just a noisy
observation of f(x):

Yi ~ p(ylf(x;))

Yi "d Bern ;)
' 1+ exp(—f(x;))

o(f(x))
00 04 08
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