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Definition of exponential family

A distribution is in the exponential family if it can be written in
the following form:
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Why talk about the exponential family?

Most distributions you know are in the exponential family
Maximum entropy solutions (via moment matching)
Writing in this form can reveal new algorithms
All distributions in the exponential family have conjugate
distributions
Parametrizing in log-linear form can make learning the
parameters easier
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Examples

(on chalkboard)
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MLE for MRFs? Bad news...
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...but wait, there’s hope!

The first term is linear in w
The second term is also a function of w, and we can
compute derivatives in the following way..
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Derivative of log-partition function
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Log partition function is convex!

Similarly, 2nd derivatives are the 2nd-order moments (i.e.
the covariance matrix).
This is positive semi-definitive, which means that the
log-partition function is convex.
This means we can use any convex optimization algorithm!
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Notes on moment matching

Yesterday we saw that the ML solution had the same
moments as our data
This does not mean we can (always) estimate the ML
parameters directly from the data
Tree-structured MRFs are a special case where we can
esimate the parameters from the moments (you will show
this in your HW)
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What is a Gaussian Process?

A distribution over functions
Allows us to do Bayesian estimation of functions
A generalization of multivariate Gaussians to infinite
dimensional space
Provides explicit representation of uncertainty as a function
of input x
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Definition of a Gaussian Process

Rachel Hodos Lab 10: Inference and Representation



Exponential families and learning MRFs
Gaussian Processes

Regression using GP, noise-free
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Regression using GP, general
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Posterior over functions
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Latent GPs

Can generalize to case where y no longer just a noisy
observation of f (x):

yi ∼ p(y |f (xi))
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