Inference and Representation

Rachel Hodos

New York University

Lab 12, December 9, 2015

・ロト ・ ア・ ・ ヨト ・ ヨト

3

Overview of structured prediction

くロト (過) (目) (日)

Structured prediction

• Problem: given input **x**, predict *structured* output **y**, i.e.

$$\mathbf{y}^* = \arg \max_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y} | \mathbf{x})$$

• For example, y could be:

- a sequence of labels on a sentence
- a 2D grid of values estimating the depth of the image
- a tree of dependencies over words in a sentence
- Naive approach: treat as multi-class classification (for y discrete) or multivariate regression (y cts.)
 - Impractical: |Y| could be huge!
- However, we can succeed by modeling the relationships between the y variables.
- How? CRF's.

くロト (過) (目) (日)

Examples of CRFs

Segmentation

Support Relations

Rachel Hodos

Lab 12: Inference and Representation

Parametrizing CRFs

- We've talked before about how we might manually *define* CRF parameters to encode some heuristic, e.g.:
 - "Neighboring pixels usually have the same label."
 - "Nouns often come before verbs."
- Now, we are addressing how to *learn* the parameters

ヘロト ヘ戸ト ヘヨト ヘヨト

Example: parameterizing POS tagging model

given:

- a sentence of length n and a tag set ${\mathcal T}$
- one variable for each word, takes values in ${\mathcal T}$
- edge potentials $\theta(i-1,i,t',t)$ for all $i \in n, t,t' \in \mathcal{T}$

example:

United₁ flies₂ some₃ $large_4$ jet₅

 $\mathcal{T} = \{A, D, N, V\}$

Details on chalkboard...

・ロト ・ 理 ト ・ ヨ ト ・

3

How to learn the parameter vector w?

We saw yesterday that MLE is impractical due to Z:

$$\mathbf{w}^{ML} = \arg\min_{\mathbf{w}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} -\log p(\mathbf{y} \mid \mathbf{x}; \mathbf{w})$$

= $\arg\max_{\mathbf{w}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \left(\sum_{c} \log \phi_{c}(\mathbf{x}, \mathbf{y}_{c}; \mathbf{w}) - \log Z(\mathbf{x}; \mathbf{w}) \right)$
= $\arg\max_{\mathbf{w}} \mathbf{w} \cdot \left(\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}) \right) - \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \log Z(\mathbf{x}; \mathbf{w})$

ヘロア 人間 アメヨア 人口 ア

From MLE to minimizing classification error

From yesterday:

• Consider the empirical risk for 0-1 loss (classification error):

$$\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \mathbb{1} \{ \exists \mathbf{y}' \neq \mathbf{y} \text{ s.t. } \hat{\rho}(\mathbf{y}' | \mathbf{x}) \geq \hat{\rho}(\mathbf{y} | \mathbf{x}) \}$$

• Each constraint $\hat{\rho}(\mathbf{y}'|\mathbf{x}) \geq \hat{\rho}(\mathbf{y}|\mathbf{x})$ is equivalent to

$$\mathbf{w} \cdot \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}') - \log Z(\mathbf{x}; \mathbf{w}) \geq \mathbf{w} \cdot \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}) - \log Z(\mathbf{x}; \mathbf{w})$$

• The log-partition function cancels out on both sides. Re-arranging, we have:

$$\mathbf{w} \cdot \left(\sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}') - \sum_{c} \mathbf{f}_{c}(\mathbf{x}, \mathbf{y}_{c}) \right) \geq 0$$

• Said differently, the empirical risk is zero when $\forall (x,y) \in \mathcal{D}$ and $y' \neq y,$

$$\mathbf{w} \cdot \left(\sum \mathbf{f}_c(\mathbf{x}, \mathbf{y}_c) - \sum \mathbf{f}_c(\mathbf{x}, \mathbf{y}'_c) \right) > 0.$$

ъ

Rachel Hodos Lab 12: Inference and Representation

From MLE to minimizing classification error

- Gain: partition function cancels out...
- New challenge: large # of constraints!

ヘロト 人間 ト ヘヨト ヘヨト

Algorithms for structured prediction

- Structured perceptron
- Structured SVM:
 - All constraints satisfied
 - With slack
 - With margin scaling

ヘロト 人間 ト ヘヨト ヘヨト