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Representation

Distributions over finite sets of random variables:
BN
MRF
CRF

Distribution over functions / infinite # of variables:
GP
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Gaussian Processes

For a given kernel (and kernel parameters), defines a prior
over functions via multivariate Gaussian for any given x ’s
In both noisy and noise-free settings, have closed-form
expressions for posterior (also a GP)
Posterior at each point is Gaussian (since marginal of
multinormal is univariate normal), so e.g. can plot 95%
confidence interval
Equivalent to Bayesian linear regression on φ(x), where φ
is the feature mapping consistent with the chosen kernel
Usually a small number of parameters to learn, so can
estimate via grid search
Standard setting is regression, but latent GPs extend, e.g.
to classification

Rachel Hodos Lab 13: Inference and Representation



Review for final exam
Representation
Learning
Inference

Outline

1 Review for final exam
Representation
Learning

Parameter learning
Structure learning

Inference

Rachel Hodos Lab 13: Inference and Representation



Review for final exam
Representation
Learning
Inference

Overview of Parameter Learning

Goal: select the ‘best’ model parameters by minimizing
some loss function with respect to the data
Most of semester focused on MLE: loss = − log p(x; θ)
Can do MAP estimation of parameters using a prior (think
of this as regularized MLE)
We also briefly touched on pseudo-likelihood (see end of
lecture 10 for more details)

Rachel Hodos Lab 13: Inference and Representation



Review for final exam
Representation
Learning
Inference

MLE in fully observed setting

Discrete BNs: given directly from empirical CPDs (see
second half of Lab3 slides for proof)
Trickier for MRFs due to partition function:

However, writing p(x) in log-linear form (see lecture 10 and
loglin.pdf), gives a convex objective
Hence can use any convex optimization algorithm
But computing gradient of Z is equivalent to marginal
inference =⇒ often hard
To get around this, can do pseudo-likelihood estimation

In either case, MLE estimation within exponential family
implies moment-matched solution
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MLE with hidden variables: EM
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MLE with hidden variables: EM

Regular EM:
θt+1 = arg maxθ

∑M
m=1 Ep(zm|xm;θt )[log p(xm, zm; θ)]

Variational EM:

θt+1 = arg max
θ

M∑
m=1

Eq(zm;φt )[log p(xm, zm; θ)] + H(q(z;φt))

φm
t+1 = arg max

φ
Eq(zm;φ)[log p(xm, zm; θt+1)] + H(q(zm;φ)) ∀m

Variational EM with recognition model: instead of solving
an optimization problem to find each φm, learn a
deterministic mapping f : x→ φ. Now the variational
parameters become the parameters of f .
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Structure learning

Chow-Liu: algorithm to learn tree-structured MRF
Closed-form MLE for edges + minimum spanning tree

Sparsity structure of Gaussian MRF can be estimated via
0’s in inverse of data covariance matrix
BN structure learning can be formulated as an ILP
(optional reading)
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Overview of marginal inference

Goal: for some subset Z of unobserved vars, and possibly
a subset X of observed vars, compute marginals:

p(Z|X = x)

Sum-product variable elimination: exact
Sum-product BP: exact for trees, otherwise no guarantees
Monte Carlo methods: approximate, but exact with infinite
sampling
Variational inference (minimize D(q||p) over some set Q):
approximate
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Overview of MAP inference

Goal: find the mode of the prior/posterior given some fixed
θ:

MAP(θ) = arg max
x

p(x; θ)

Max-product variable elimination: exact
Max-product BP: exact for trees, otherwise use MPLP from
Lecture 14
ILP (see next slides)
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Review of yesterday’s lecture

Def’n of ILP: linear objective with linear constraints and
integrality constraints
Off the shelf ILP solvers
Formulation of MAP inference as ILP:
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Interpretation of marginal polytope
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Linear programming duality
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