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Representation

@ Distributions over finite sets of random variables:

e BN
o MRF
e CRF

@ Distribution over functions / infinite # of variables:
e GP
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Gaussian Processes

Samples from the posterior
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Gaussian Processes

@ For a given kernel (and kernel parameters), defines a prior
over functions via multivariate Gaussian for any given x’s

@ In both noisy and noise-free settings, have closed-form
expressions for posterior (also a GP)

@ Posterior at each point is Gaussian (since marginal of
multinormal is univariate normal), so e.g. can plot 95%
confidence interval

@ Equivalent to Bayesian linear regression on ¢(x), where ¢
is the feature mapping consistent with the chosen kernel

@ Usually a small number of parameters to learn, so can
estimate via grid search

@ Standard setting is regression, but latent GPs extend, e.g.
to classification
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Overview of Parameter Learning

@ Goal: select the ‘best’ model parameters by minimizing
some loss function with respect to the data

@ Most of semester focused on MLE: loss = — log p(x; 0)

@ Can do MAP estimation of parameters using a prior (think
of this as regularized MLE)

@ We also briefly touched on pseudo-likelihood (see end of
lecture 10 for more details)
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MLE in fully observed setting

@ Discrete BNs: given directly from empirical CPDs (see
second half of Lab3 slides for proof)
@ Trickier for MRFs due to partition function:

e However, writing p(x) in log-linear form (see lecture 10 and
loglin.pdf), gives a convex objective

e Hence can use any convex optimization algorithm

e But computing gradient of Z is equivalent to marginal
inference = often hard

e To get around this, can do pseudo-likelihood estimation

@ In either case, MLE estimation within exponential family
implies moment-matched solution

Rachel Hodos Lab 13: Inference and Representation



Representation
Review for final exam Learning
Inference

MLE with hidden variables: EM

a special case of a special case of
Approach EM Variational EM Variational EM with
recognition models
Idea Optimize Optimize lower bound | Learn direct map
likelihood via on log(p) via f: x -> params of q
expectation expectation over
over p(z|x) q(z) = p(z!x)
Guarantees Guaranteed to | Can bound error if Can bound error if combined
converge to combined with upper with upper bound to
local optimum bound to likelihood* likelihood*

*See end of lecture 11
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MLE with hidden variables: EM

@ Regular EM:
Or1 = argmaxg > m_1 Epzmixmon 109 P(Xm, Zm; 0)]
@ Variational EM:

M
Ot =argmax > _ Eqezy)[109 p(Xm: Zm: 0)] + H(q(z: ¢1))
m=1

¢fiy = arg max Eqzys) [llog p(Xm. Zm; 0t+1)] + H(Q(Zm; )) Ym

@ Variational EM with recognition model: instead of solving
an optimization problem to find each ¢n, learn a
deterministic mapping f : X — ¢. Now the variational
parameters become the parameters of f.
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Structure learning

@ Chow-Liu: algorithm to learn tree-structured MRF
o Closed-form MLE for edges + minimum spanning tree

@ Sparsity structure of Gaussian MRF can be estimated via
0’s in inverse of data covariance matrix

@ BN structure learning can be formulated as an ILP
(optional reading)
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Overview of marginal inference

@ Goal: for some subset Z of unobserved vars, and possibly
a subset X of observed vars, compute marginals:

p(ZIX = x)

@ Sum-product variable elimination: exact
@ Sum-product BP: exact for trees, otherwise no guarantees

@ Monte Carlo methods: approximate, but exact with infinite
sampling

@ Variational inference (minimize D(q||p) over some set Q):
approximate
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Overview of MAP inference

@ Goal: find the mode of the prior/posterior given some fixed
0:
MAP(§) = arg max p(x; 6)
@ Max-product variable elimination: exact

@ Max-product BP: exact for trees, otherwise use MPLP from
Lecture 14

@ ILP (see next slides)
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Review of yesterday’s lecture

@ Def’'n of ILP: linear objective with linear constraints and
integrality constraints

@ Off the shelf ILP solvers

@ Formulation of MAP inference as ILP:

MAP(f) = msz D 0itamiCa) + 3 Y 05(xi, x5 i (xi %)

eV xi jeE xix;j

subject to:

m

) 0,1} Vie V,x
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pil) = D wilax) Vi€ E.x;

wiGg) = > wilxix) Vi€ Ex
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Interpretation of marginal polytope
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Linear programming duality

l (Dual) LP relaxation
i (Primal) LP relaxation
MAP assignment
x ¢ Integer linear program

MAP(0) < LP(0) = DUAL-LP(0) < L(4)
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