Inference and Representation

Rachel Hodos

New York University

Lab 2, September 9, 2015

ヘロン ヘアン ヘビン ヘビン

Rachel Hodos Lab 2: Inference and Representation

ヘロト 人間 とくほとくほとう

Conditional Independence Triplets

- Bayesian networks represent conditional independencies
- Independence can be identified in any graph by understanding these three cases on triplets:
 - cascade (or chain)
 - common parent (or common cause)
 - common child (or v-structure)

ヘロン 人間 とくほ とくほ とう

An aside..

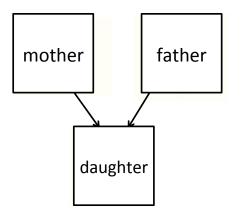
• Alternative definition of independence:

$$(A \perp B|C)$$
 iff $p(A|B, C) = P(A|C)$

• You will prove this in your homework.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

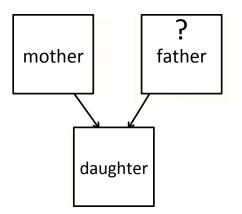
V-structures



Rachel Hodos Lab 2: Inference and Representation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

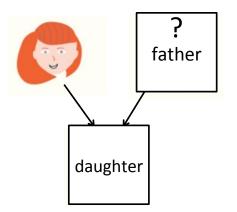
V-structures



Rachel Hodos Lab 2: Inference and Representation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

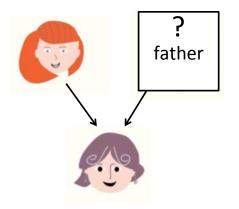
V-structures



Rachel Hodos Lab 2: Inference and Representation

ヘロト 人間 とくほとくほとう

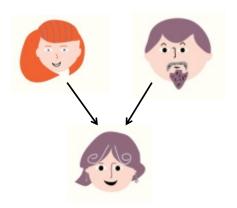
V-structures



Rachel Hodos Lab 2: Inference and Representation

ヘロト 人間 とくほとくほとう

V-structures



Rachel Hodos Lab 2: Inference and Representation

ヘロト 人間 とくほとくほとう

Review of I-maps and P-maps

- Let I(G) be the set of all conditional independencies implied by the directed acyclic graph (DAG) G
- Let I(p) denote the set of all conditional independencies that hold for the joint distribution p.
- A DAG G is an **I-map** (independence map) of a distribution p if $I(G) \subseteq I(p)$
 - A fully connected DAG G is an I-map for any distribution, since $I(G) = \emptyset \subseteq I(p)$ for all p
- G is a **minimal I-map** for p if the removal of even a single edge makes it not an I-map
 - A distribution may have several minimal I-maps
 - Each corresponds to a specific node-ordering
- G is a **perfect map** (P-map) for distribution p if I(G) = I(p)

イロト 不得 とくほ とくほ とうほ

I-map, U-map, we all map...

- What's the point?
- Bayesian networks should represent or visualize our probability distribution
- If G is a perfect map, we can (to some degree) trust G to accurately represent p

ヘロン 人間 とくほ とくほ とう

When do the parameters matter?

- Could find state-dependent independencies
- May have some scientific significance (e.g. how strongly does molecule A regulate molecule B?)
- May care about what variable is most strongly associated with another variable

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction to python package pymc3

- Let's use pymc3 to define and learn a simple statistical model
- Example from pymc-devs.github.io/pymc3/getting_started
- Suppose we have three variables, *X*₁, *X*₂ and *Y* that follow this distribution:

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu = \alpha + \beta_1 X_1 + \beta_2 X_2$$

- Parameters: $\alpha = 1, \sigma = 1, \beta_1 = 1, \beta_2 = 2.5$
- Y depends linearly on X₁ and X₂
- Let's do linear regression

ヘロト 人間 とくほ とくほ とう

Linear regression using pymc3

- We will assume we know the form of the model
- Let's define prior distributions over the model parameters:

 $egin{aligned} & lpha & \sim \mathcal{N}(0, 100) \ & eta_i & \sim \mathcal{N}(0, 100) \ & \sigma & \sim |\mathcal{N}(0, 1)| \end{aligned}$

• pymc3 can find the MAP solution (*maximum a posteriori*, more about this later)

イロト イポト イヨト イヨト 三日