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Review from last week
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An unexpected lesson on feature correlation

Linear regression using pymc3
Model: Y ⇠ N (µ,�2), µ = ↵+ �1X1 + �2X2

Parameters: ↵ = 1,� = 1,�1 = 1,�2 = 2.5
Estimated coefficients:

We generated data using the following lines of code:

X1 = np.linspace(0, 1, n); X2 = np.linspace(0, 0.2, n)

What is the correlation between X1 and X2?
Why would this cause a problem?
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Review from last week
Review of yesterday’s case studies

Applying probabilistic modeling in the real world

Some questions addressed yesterday:
Can I quantify your political stance based on who you
follow?
What general topics are being discussed on Twitter?

How does this change over time?
Who is talking about what?

How much dialogue occurs on social media between
people with different ideologies?
Are representatives of Congress affected by what their
followers are discussing?
How can we interpret neuronal spiking patterns in the
brain?
What makes neurons spike together?
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Miscellaneous comments

Clarification: inverse logit = logistic function =

f (x) =
e

x

e

x + 1
=

1
1 + e

�x

Both speakers used hidden variables, the state of the
hidden variables told them something interesting
Naive Bayes
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Problem Statement

Parameter Learning

Given:

A Bayesian network structure.
X1 X2

X3

X5

X4

A data set
X1 X2 X3 X4 X5

0 0 1 1 0
1 0 0 1 0
0 1 0 0 1
0 0 1 1 1
: : : : :

Estimate conditional probabilities:

P(X1), P(X2), P(X3|X1, X2), P(X4|X1), P(X5|X1, X3, X4)
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Principles of Parameter Learning Maximum likelihood estimation

Single-Node Bayesian Network

TH

X: result of tossing a thumbtack

X
Consider a Bayesian network with one
node X , where X is the result of tossing a
thumbtack and ΩX = {H , T}.

Data cases:
D1 = H , D2 = T , D3 = H , . . . , Dm = H

Data set: D = {D1, D2, D3, . . . , Dm}

Estimate parameter: θ = P(X=H).
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Principles of Parameter Learning Maximum likelihood estimation

Likelihood

Data: D = {H , T , H , T , T , H , T}

As possible values of θ, which of the following is the most likely? Why?

θ = 0
θ = 0.01
θ = 10.5

θ = 0 contradicts data because P(D|θ = 0) = 0.It cannot explain the data
at all.

θ = 0.01 almost contradicts with the data. It does not explain the data well.
However, it is more consistent with the data than θ = 0 because
P(D|θ = 0.01) > P(D|θ = 0).

So θ = 0.5 is more consistent with the data than θ = 0.01 because
P(D|θ = 0.5) > P(D|θ = 0.01)
It explains the data the best among the three and is hence the most likely.
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Principles of Parameter Learning Maximum likelihood estimation

Maximum Likelihood Estimation

θ *

θL(  |D)

θ
10

In general, the larger P(D|θ = v) is, the
more likely θ = v is.

Likelihood of parameter θ given data set:

L(θ|D) = P(D|θ)

The maximum likelihood estimation
(MLE) θ∗ of θ is a possible value of θ
such that

L(θ∗|D) = supθL(θ|D).

MLE best explains data or best fits data.
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Principles of Parameter Learning Maximum likelihood estimation

i.i.d and Likelihood

Assume the data cases D1, . . . , Dm are independent given θ:

P(D1, . . . , Dm|θ) =
m

∏

i=1

P(Di |θ)

Assume the data cases are identically distributed:

P(Di = H) = θ, P(Di = T ) = 1−θ for all i

(Note: i.i.d means independent and identically distributed)

Then

L(θ|D) = P(D|θ) = P(D1, . . . , Dm|θ)

=
m

∏

i=1

P(Di |θ) = θmh(1 − θ)mt (1)

where mh is the number of heads and mt is the number of tail.
Binomial likelihood.
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Principles of Parameter Learning Maximum likelihood estimation

Example of Likelihood Function

Example: D = {D1 = H , D2T , D3 = H , D4 = H , D5 = T}

L(θ|D) = P(D|θ)

= P(D1 = H |θ)P(D2 = T |θ)P(D3 = H |θ)P(D4 = H |θ)P(D5 = T |θ)

= θ(1 − θ)θθ(1 − θ)

= θ3(1 − θ)2.
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Principles of Parameter Learning Maximum likelihood estimation

Loglikelihood

Loglikelihood:

l(θ|D) = logL(θ|D) = logθmh(1 − θ)mt = mhlogθ + mt log(1 − θ)

Maximizing likelihood is the same as maximizing loglikelihood. The latter is
easier.

By Corollary 1.1 of Lecture 1, the following value maximizes l(θ|D):

θ∗ =
mh

mh + mt
=

mh

m

MLE is intuitive.

It also has nice properties:

E.g. Consistence: θ∗ approaches the true value of θ with probability 1
as m goes to infinity.
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Principles of Parameter Learning Bayesian estimation

Drawback of MLE

Thumbtack tossing:

(mh, mt) = (3, 7). MLE: θ = 0.3.
Reasonable. Data suggest that the thumbtack is biased toward tail.

Coin tossing:

Case 1: (mh, mt) = (3, 7). MLE: θ = 0.3.
Not reasonable.
Our experience (prior) suggests strongly that coins are fair, hence
θ=1/2.
The size of the data set is too small to convince us this particular coin
is biased.
The fact that we get (3, 7) instead of (5, 5) is probably due to
randomness.

Case 2: (mh, mt) = (30, 000, 70, 000). MLE: θ = 0.3.
Reasonable.
Data suggest that the coin is after all biased, overshadowing our prior.

MLE does not differentiate between those two cases. It doe not take
prior information into account.
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Parameter Estimation in General Bayesian Networks The Parameters

The Parameters

n variables: X1, X2, . . . , Xn.

Number of states of Xi : 1, 2, . . . , ri=|ΩXi |.

Number of configurations of parents of Xi : 1, 2, . . . , qi=|Ωpa(Xi )|.

Parameters to be estimated:

θijk = P(Xi = j |pa(Xi ) = k), i = 1, . . . , n; j = 1, . . . , ri ; k = 1, . . . , qi

Parameter vector: θ = {θijk |i = 1, . . . , n; j = 1, . . . , ri ; k = 1, . . . , qi}.
Note that

∑

j θijk = 1∀i , k

θi ..: Vector of parameters for P(Xi |pa(Xi ))

θi .. = {θijk |j = 1, . . . , ri ; k = 1, . . . , qi}

θi .k : Vector of parameters for P(Xi |pa(Xi )=k)

θi .k = {θijk |j = 1, . . . , ri}
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Parameter Estimation in General Bayesian Networks The Parameters

The Parameters

Example: Consider the Bayesian network shown below. Assume all variables
are binary, taking values 1 and 2.

3X

2X1
X

θ111 = P(X1=1), θ121 = P(X1=2)

θ211 = P(X2=1), θ221 = P(X2=2)

pa(X3) = 1 : θ311 = P(X3=1|X1 = 1, X2 = 1), θ321 = P(X3=2|X1 = 1, X2 = 1)

pa(X3) = 2 : θ312 = P(X3=1|X1 = 1, X2 = 2), θ322 = P(X3=2|X1 = 1, X2 = 2)

pa(X3) = 3 : θ313 = P(X3=1|X1 = 2, X2 = 1), θ323 = P(X3=2|X1 = 2, X2 = 1)

pa(X3) = 4 : θ314 = P(X3=1|X1 = 2, X2 = 2), θ324 = P(X3=2|X1 = 2, X2 = 2)
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Parameter Estimation in General Bayesian Networks The Parameters

Data

A complete case Dl : a vector of values, one for each variable.

Example: Dl = (X1 = 1, X2 = 2, X3 = 2)

Given: A set of complete cases: D = {D1, D2, . . . , Dm}.

Example:

X1 X2 X3 X1 X2 X3

1 1 1 2 1 1
1 1 2 2 1 2
1 1 2 2 2 1
1 2 2 2 2 1
1 2 2 2 2 2
1 2 2 2 2 2
2 1 1 2 2 2
2 1 1 2 2 2

Find: The ML estimates of the parameters θ.
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

Loglikelihood:

l(θ|D) = logL(θ|D) = logP(D|θ) = log
∏

l

P(Dl |θ) =
∑

l

logP(Dl |θ).

The term logP(Dl |θ):

D4 = (1, 2, 2),

logP(D4|θ) = logP(X1 = 1, X2 = 2, X3 = 2)

= logP(X1=1|θ)P(X2=2|θ)P(X3=2|X1=1, X2=2, θ)

= logθ111 + logθ221 + logθ322.

Recall:
θ = {θ111, θ121; θ211, θ221; θ311, θ312, θ313, θ314, θ321, θ322, θ323, θ324}
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

Define the characteristic function of case Dl :

χ(i , j , k : Dl) =

{

1 if Xi = j , pa(Xi) = k in Dl

0 otherwise

When l=4, D4 = (1, 2, 2).

χ(1, 1, 1 : D4) = χ(2, 2, 1 : D4) = χ(3, 2, 2 : D4) = 1

χ(i , j , k : D4) = 0 for all other i, j, k

So, logP(D4|θ) =
∑

ijk χ(i , j , k ; D4)logθijk

In general,

logP(Dl |θ) =
∑

ijk

χ(i , j , k : Dl )logθijk
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

Define
mijk =

∑

l

χ(i , j , k : Dl ).

It is the number of data cases where Xi = j and pa(Xi ) = k .

Then

l(θ|D) =
∑

l

logP(Dl |θ)

=
∑

l

∑

i ,j,k

χ(i , j , k : Dl )logθijk

=
∑

i ,j,k

∑

l

χ(i , j , k : Dl )logθijk

=
∑

ijk

mijk logθijk

=
∑

i ,k

∑

j

mijk logθijk . (4)
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

MLE

Want:
arg max

θ
l(θ|D) = arg max

θijk

∑

i ,k

∑

j

mijk logθijk

Note that θijk = P(Xi=j |pa(Xi)=k) and θi ′j′k′ = P(Xi ′=j ′|pa(Xi ′)=k ′) are
not related if either i ̸=i ′ or k ̸=k ′.

Consequently, we can separately maximize each term in the summation
∑

i ,k [. . .]

arg max
θijk

∑

j

mijk logθijk
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

MLE

By Corollary 1.1 , we get

θ∗ijk =
mijk

∑

j mijk

In words, the MLE estimate for θijk = P(Xi=j |pa(Xi )=k) is:

θ∗ijk =
number of cases where Xi=j and pa(Xi )=k

number of cases where pa(Xi )=k
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

Example

Example:

3X

2X1
X X1 X2 X3 X1 X2 X3

1 1 1 2 1 1
1 1 2 2 1 2
1 1 2 2 2 1
1 2 2 2 2 1
1 2 2 2 2 2
1 2 2 2 2 2
2 1 1 2 2 2
2 1 1 2 2 2

MLE for P(X1=1) is: 6/16

MLE for P(X2=1) is: 7/16

MLE for P(X3=1|X1=2, X2=2) is: 2/6

. . .

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 39 / 58



Basics of Information Theory Entropy

Kullback-Leibler divergence

Relative entropy or Kullback-Leibler divergence
Measures how much a distribution Q(X ) differs from a ”true”
probability distribution P(X ).
K-L divergence of Q from P is defined as follows:

KL(P , Q) =
∑

X

P(X )log
P(X )

Q(X )
= EP [logP(X )] − EP [logQ(X )]

0log 0
0 = 0 and plog p

0 = ∞ if p ̸=0

Not symmetric. So, not a distance measure mathematically.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 55 / 68



Basics of Information Theory Entropy

Kullback-Leibler divergence

Theorem (1.2)

(Gibbs’ inequality)
KL(P ,Q)≥0

with equality holds iff P is identical to Q

Proof:
∑

X

P(X )log
P(X )

Q(X )
= −

∑

X

P(X )log
Q(X )

P(X )

≥ −log
∑

X

P(X )
Q(X )

P(X )
Jensen’s inequality

= −log
∑

X

Q(X ) = 0.

KL distance from P to Q is larger than 0 unless P and Q are identical.
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Basics of Information Theory Entropy

A corollary

Corollary (1.1)

Let f (X ) be a nonnegative function of variable X such that
∑

X f (X ) > 0.
Let P∗(X ) be the probability distribution given by

P∗(X ) =
f (X )

∑

X f (X )
.

Then for any other probability distribution P(X )

∑

X

f (X )logP∗(X ) ≥
∑

X

f (X )logP(X )

with equality holds iff P∗ and P are identical. In other words,

P∗ = arg sup
P

∑

X

f (X )logP(X )
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Basics of Information Theory Entropy

A corollary

Proof:

KL(P∗,P) =
∑

X

P∗(X )log
P∗(X )

P(X )
≥ 0

Hence
∑

X

P∗(X )logP∗(X ) ≥
∑

X

P∗(X )logP(X )

∑

X

f (X )
∑

X f (X )
logP∗(X ) ≥

∑

X

f (X )
∑

X f (X )
logP(X )

∑

X

f (X )logP∗(X ) ≥
∑

X

f (X )logP(X )

Q.E.D
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