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Review from last week

Hidden Markov Models

Oy 5

Lol b
© 00 0 0 O

X4 Xy X X4 X5 X5
@ Joint distribution factors as:
-
p(y. %) = p(y1)p(xa | y1) [] p(ve | ye1)p(Oxc | yv2)

t=2
o A homogeneous HMM uses the same parameters (8 and « below)
for each transition and emission distribution (parameter sharing):

T

P(Y. %) = p(y1) sy H Bye,ye—1Oxeye
t=2

How many parameters need to be learned?
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Review from last week

An unexpected lesson on feature correlation

@ Linear regression using pymc3
@ Model: Y ~ N(M70—2)7:U' =a+ 61X1 + /82X2
@ Parameters:a=1,0=1,81=1,5.=25

@ Estimated coefficients:

{'alpha': array(1.0136638069892534), 'beta': array([ 1.46791629,
0.29358326]), 'sigma log': array(0.11928770010017063)}

@ We generated data using the following lines of code:
X1 = np.linspace(0, 1, n); X2 = np.linspace(0, 0.2, n)

@ What is the correlation between X1 and X27?
@ Why would this cause a problem?
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Review of yesterday’s case studies

Applying probabilistic modeling in the real world

@ Some questions addressed yesterday:
e Can | quantify your political stance based on who you
follow?
o What general topics are being discussed on Twitter?
@ How does this change over time?
@ Who is talking about what?
e How much dialogue occurs on social media between
people with different ideologies?
o Are representatives of Congress affected by what their
followers are discussing?
e How can we interpret neuronal spiking patterns in the
brain?
e What makes neurons spike together?

Rachel Hodos Lab 2: Inference and Representation



Review of yesterday’s case studies

Miscellaneous comments

@ Clarification: inverse logit = logistic function =

e 1
e+l 14e

f(x)

@ Both speakers used hidden variables, the state of the
hidden variables told them something interesting

@ Naive Bayes
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Review of yesterday’s case studies

Modeling latent political ideologies

Spatial following model

» Users’ and politicians’ ideology (6; and ¢;) are defined as
latent variables to be estimated.

» Data: “following” decisions, a matrix of binary choices (Yj).

» Spatial following model: for n users, indexed by i, and m
political accounts, indexed by j:

P(y; = 1o, B, 7, 6. ;) = logit™ <C¥j + B — (0 — ¢j)2>

where:

«j measures popularity of politician j
Bi measures political interest of user i
~ is a normalizing constant
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Review of yesterday’s case studies

Modeling latent political ideologies

Estimation
» Goal of learning:
» 0;: ideological positions of users i =1,..., n
» ¢;: ideological positions of political accountS/ =1,....,m

» Likelihood function:

p(ylo, b, a, B, HHIoglt (7)1 (1 — logit™" (7)) =i
i=1j=1

where m; = a; + 8 — (6 — ¢;)?

» Exact inference is intractable — MCMC (approx. inference)
» Estimation:

» First stage: HMC in Stan with random sample of Y to compute
posterior distribution of j-indexed parameters.

» Second stage: parallelized MH in R for rest of i-indexed
parameters (assuming independence), on NYU’s HPC.
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Review of yesterday’s case studies

Modeling latent political ideologies

Application: Ideology of Presidential Candidates

Twitter ideology scores of potential Democratic and Republican presidential primary candidates

@SenWarren ——e——
@Sensanders
@GovernorOMalley —e—
@VotherJones —e—
@LincolnChafee ——e—

@POTUS
@HillaryClinton —e—
@mWebbUSA —e—
b —e—
@nytimes—e—
@washingtonpost —e—

Average Republican
in 1141 Congress

W

—e— @realDonaldTrump

—e— @CarlyFiorina
—e— eGovChristie

5 ——e@marcorubio
B3 E ——@JohnKasich
i _ @GovemorPataki
§ 2 4 —e—@GovernorPerry
3 & —e— @BobbyJindal
2 —_— g
g5 2 B GRandPl
2 = g @cottWalker
~3 S @RealBenCarson
Rl Giedcriz

-1 0 1 2
Position on latent ideological scale

Barbera “Who is the most conservative Republican candidate for
president?” The Washington Post, June 16 2015
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Problem Statement

Parameter Learning

m Given:

m A Bayesian network structure.

m A data set

(X[ X [ X5 [ Xa | X5 ]
0]0]1]1]0

1 0
0 1
1 1

1 0 0
0 1 0
0 0 1

m Estimate conditional probabilities:

P(Xl)7P(X2)7P(X3|X17X2)7P(X4|X1)7P(X5|X17X37X4)
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Principles of Parameter Learning Maximum likelihood estimation

Single-Node Bayesian Network

m Consider a Bayesian network with one
@ node X, where X is the result of tossing a
thumbtack and Qx = {H, T}.

X: result of tossing a thumbtack m Data cases:
Di=H D,=T,D3=H, ..., Dn=H
/\;—/////////C\//, m Dataset: D= {Dy,D,,D;s,...,Dn}
H T m Estimate parameter: § = P(X=H).
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Principles of Parameter Learning Maximum likelihood estimation

Likelihood

m Data: D={H,T,H, T, T,H, T}

m As possible values of 8, which of the following is the most likely? Why?

m6=0
m 0=0.01
m =105

m 0 = 0 contradicts data because P(D|# = 0) = 0.It cannot explain the data
at all.

m 0 = 0.01 almost contradicts with the data. It does not explain the data well.
However, it is more consistent with the data than 8 = 0 because
P(D|# =0.01) > P(D|6 = 0).
m So 6 = 0.5 is more consistent with the data than 6 = 0.01 because
P(D|# = 0.5) > P(D|6 = 0.01)
It explains the data the best among the three and is hence the most likely.
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Principles of Parameter Learning Maximum likelihood estimation

Maximum Likelihood Estimation

m In general, the larger P(D|0 = v) is, the
more likely 6 = v is.

m Likelihood of parameter 6 given data set:

L(0|D) = P(D|0)

1colm) m The maximum likelihood estimation
(MLE) 6* of 0 is a possible value of 8
such that

L(6*|D) = supyL(8|D).
MLE best explains data or best fits data.
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Principles of Parameter Learning Maximum likelihood estimation

i.i.d and Likelihood

m Assume the data cases Ds, ..., D, are independent given 6:
m
P(Dy,...,Dp|0) = ] P(Dil0)
i=1

m Assume the data cases are identically distributed:

P(D; = H) = 0,P(D; = T) = 1-0 for all i
(Note: i.i.d means independent and identically distributed)
m Then
L(0ID) = P(D[#) = P(Dx,..., Dm|0)
= [IP@ie)=oma-om o
i=1

where my, is the number of heads and m; is the number of tail.
Binomial likelihood.
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Principles of Parameter Learning Maximum likelihood estimation

Example of Likelihood Function

m Example: D={Dy = H,D;T,D3 =H,Dy = H,Ds = T}
L(#ID) = P(D|6)
= P(Dy = HIO)P(Dy = T|0)P(Ds = H|0)P(Ds = H|)P(Ds = T|0
= 0(1-0)00(1—0)
63(1 — )2
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Principles of Parameter Learning Maximum likelihood estimation

Loglikelihood

Loglikelihood:

1(6|D) = logL(0|D) = logf™ (1 — )™ = mpulogh + mlog(1 — 0)

Maximizing likelihood is the same as maximizing loglikelihood. The latter is
easier.

By Corollary 1.1 of Lecture 1, the following value maximizes /(6|D):

mp + m; m

m MLE is intuitive.
m It also has nice properties:

m E.g. Consistence: 0* approaches the true value of § with probability 1
as m goes to infinity.
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Principles of Parameter Learning Bayesian estimation

Drawback of MLE

m Thumbtack tossing:

m (my,m:) =(3,7). MLE: § = 0.3.
m Reasonable. Data suggest that the thumbtack is biased toward tail.

m Coin tossing:
m Case 1: (mp, my) = (3,7). MLE: 6 =0.3.
m Not reasonable.
m Our experience (prior) suggests strongly that coins are fair, hence
0=1/2.
m The size of the data set is too small to convince us this particular coin
is biased.
m The fact that we get (3, 7) instead of (5, 5) is probably due to
randomness.
m Case 2: (mp, m:) = (30,000, 70,000). MLE: 8 =0.3.
m Reasonable.
m Data suggest that the coin is after all biased, overshadowing our prior.
m MLE does not differentiate between those two cases. It doe not take
prior information into account.
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Parameter Estimation in General Bayesian Networks The Parameters

The Parameters

m nvariables: X1, X5, ..., X,.

m Number of states of X;: 1,2, ..., r,=|Qx.|.

m Number of configurations of parents of X; : 1, 2, ..., gi=|Qpax)|-
m Parameters to be estimated:

G;J-k:P(X;:j|pa(X;):k), i:1,...,n;j:1,...,r,-;k:1,...,q,-

m Parameter vector: § = {@j|i=1,....,nj=1,....,rik=1,...,qi}.
Note that 0% = 1Vi, k

m 0; : Vector of parameters for P(X;|pa(X;))
9,'” = {9,-jk|j:1,...,r,-;k:1,...,q,-}
m 0; k. Vector of parameters for P(X;|pa(X;)=k)

9,’./( = {Gukb = 1,...,r,-}
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Parameter Estimation in General Bayesian Networks

The Parameters

The Parameters

m Example: Consider the Bayesian network shown below. Assume all variables
are binary, taking values 1 and 2.

0111
0211
pa(X3) =1: 0311
pa(X3) = 2: 6312
pa(X3) =3 : 0313
pa(X3) = 4: 0314

Nevin L. Zhang (HKUST)

P

X1=1), 6121 = P(X1=2)

P X2:1),6221 = P(X2:2)

P

T

(
(
(
(
P(
(

X3=
X3=

1UX1 =2, X% =1

)
)
)

0323 =

P(X3=1|X1 = 2, Xo = 2), 0304 =

Bayesian Networks

X3=1|X1 =1,Xo =1),631 = P
1X1 =1, X2 =2),030 =P

P

X3
X3

/—\/—\/—\A
(,o

X3=2|X; =1, X, =1
=2(X,=1,% =2
=2(X,=2,%=1
X3=2|X1 =2, X, =2

)
)
)
)
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Parameter Estimation in General Bayesian Networks

Data

m Example:

m Find: The ML estimates of the parameters 6.

Nevin L. Zhang (HKUST)

The Parameters

A complete case D;: a vector of values, one for each variable.
Example: D; = (X1 =1,X=2,X3 =2)

m Given: A set of complete cases: D = {Dy, D5, ...

) Dm} .
X1 X X3 || X1 Xo X
1 1 1 2 1 1
1 1 2 2 1 2
1 1 2 2 2 1
1 2 2 2 2 1
1 2 2 2 2 2
1 2 2 2 2 2
2 1 1 2 2 2
2 1 1 2 2 2

Bayesian Networks

Fall 2008
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

m Loglikelihood:

I(0|D) = logL(6|D) = logP(D|0) = log [ [ P(Di[6) = ) _ logP(D)|6).

m The term logP(D|6):

m D,=(1,2,2),
logP(D4|0) = logP(X1=1,X=2,X;5 =2)
= /OgP(X1:1|9)P(X2:2|6‘)P(X3:2|X1:1,X2:2,9)
= logbi11 + logBan1 + logfson.
Recall:

0 = {6111, 0121; 0211, 0201, 0311, 0312, 0313, 0314, 0321, 0322, 8303, O304 }
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

m Define the characteristic function of case D;:

1 if Xi=j, pa(X;) =k in D,
0 otherwise

x(i,j, k: Dy) = {

m When /=4, D, = (1,2,2).
X(1,1,1: Ds) = x(2,2,1: Dy) = x(3,2,2: D) =1

x(i,j, k : Dy) = 0 for all other i, j, k

SO, /OgP(D4|9) = Zijk X(l',j7 k; D4)/Og9,'jk

In general,

logP(Dy|0) = > x(i,j, k : D;)logb
ijk

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

m Define

mik = X(i.j, k: D).
]
It is the number of data cases where X; = j and pa(X;) = k.

m Then
1(0|D)

Z/ogP Dy|6)
= ZZXIJJ< Dy)log i

iJj,k

= ZZXIJ,/( Dy)log 8k

ij,k

= Z mijclog 0k

ijk

= ZZm,-jklogG,-jk.
ik

Nevin L. Zhang V(HK’US’T)V Bayesian Networks Fall 2008
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

MLE

m Want:
arg meax/(9|D) = arg n;axz Z mijxlog 0k

ik

m Note that 9,'1'/( = P(X,:J|pa(X,):k) and 9,-/1-/;(/ = P(X;/:j’|pa(X,-/):k’) are
not related if either i/’ or k£k'.

m Consequently, we can separately maximize each term in the summation

2wl
arg max Z mijklog
J

ijk
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

MLE

m By Corollary 1.1, we get

gr, = ik
ijk — B
Zj mijk

m In words, the MLE estimate for 0 = P(Xj=j|pa(X;)=k) is:

number of cases where X;=j and pa(X;)=k
number of cases where pa(X;)=k

*

itk —

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008

38 /58



Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

Example

Example:

/@

m MLE for P(X,=1) is: 6/16
m MLE for P(Xx=1) is: 7/16
m MLE for P(Xs=1X1=2, X,=2) is: 2/6

Nevin L. Zhang (HKUST) Bayesian Networks

X1 X X || X1 X2 X3
1 1 1 2 1 1
1 1 2 2 1 2
1 1 2 2 2 1
1 2 2 2 2 1
1 2 2 2 2 2
1 2 2 2 2 2
2 1 1 2 2 2
2 1 1 2 2 2

Fall 2008
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Basics of Information Theory Entropy

Kullback-Leibler divergence

m Relative entropy or Kullback-Leibler divergence

m Measures how much a distribution Q(X) differs from a "true”
probability distribution P(X).
m K-L divergence of Q from P is defined as follows:

Z P(X ﬁxg = Ep[logP(X)] — Ep[logQ(X)]

Ologg =0 and plogg = o< if p#0

m Not symmetric. So, not a distance measure mathematically.
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Basics of Information Theory Entropy

Kullback-Leibler divergence

Theorem (1.2)

(Gibbs’ inequality)
KL(P,Q)>0

with equality holds iff P is identical to @

Proof:

ZPX)/ ; = ZPX)/g QX

Jensen's inequality

KL distance from P to @ is larger than 0 unless P and @ are identical.
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Basics of Information Theory Entropy

A corollary

Corollary (1.1)

Let f(X) be a nonnegative function of variable X such that ), f(X) > 0.

Let P*(X) be the probability distribution given by

f(X)
2x f(X)

Then for any other probability distribution P(X)

D f(X)logP*(X) =Y f(X)logP(X)
X

X

P*(X) =

with equality holds iff P* and P are identical. In other words,

= argsupz f(X)logP(X

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008
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Basics of Information Theory Entropy

A corollary
Proof:

KL(P*,P) = ZP* X)log ((X)) 0
Hence

> PH(X)logP"(X) = > P*(X)logP(X)
X X
zxj = 7(x) P ) = EX: > 70x) 8P X)

D F(X)logP*(X) = Y f(X)logP(X)
X

X
Q.ED
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