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Clarification on I-equivalent Bayesian Networks

Theorem:
If DAG’s G and G′ have the same V-structures and the

same skeleton then I(G) = I(G′).

But the converse is not always true!
Counterexample: two different, fully connected triplets
Definition: immorality = v-structure where parents are not
connected
Revised statement that is true in both directions:

DAG’s G and G′ have the same immoralities and the
same skeleton iff I(G) = I(G′).
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Q: Why don’t we have to worry about V-structures
when we factorize a distribution?

In order to go from a simple chain rule factorization:

P(X1, . . . ,Xn) =
∏

P(Xi |X1, . . . ,Xi−1)

to the canonical BN factorization,

P(X1, . . . ,Xn) =
∏

P(Xi |Pa(Xi))

we only use the following type of conditional independence:

Xi ⊥ Xnon−desc |Pa(Xi).

The conditional independence follows from d-separation.
So, we never condition on children, and hence don’t have
to worry about V-structures.
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Proof: Assume topological ordering... (Theorem 3.1
Koller & Friedman)
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Q: Is there an algorithm to construct all possible
graphs for a given set of independence statements?

No, but there is an algorithm to construct a minimal I-map given
some I(p) and some variable ordering:
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Markov Random Fields (undirected graphical models)

Rather than CPDs, we specify (non-negative) potential
functions over sets of variables associated with cliques C
of the graph,

p(x1, . . . , xn) =
1
Z

∏
c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Like CPD’s, φc(xc) can be represented as a table, but it is
not normalized
Called undirected graphical models, Markov random fields
(MRFs), or Markov networks
Independence given simply by graph separation
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Comparing BNs to MRFs

There are some I(p)’s that can be represented by MRFs
but not BNs, and vice versa. (Examples are v-structure,
and four friends’ hair color from yesterday).

Advantage of MRFs: marginalization and inference are
local operations
Disadvantage: hard to compute the partition function (sum
over all possible states), often resort to approximations
Disadvantage: no longer a natural way to sample data
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Remarks on MRFs

Cliques are not the same thing as CPD’s or marginals
However, setting a clique potential to 0 for a particular state
will result in probability being equal to 0
Edges are undirected but cliques potentials do not have to
be symmetric
Maximal cliques provide sufficient parametrization, so why
not only use maximal cliques?

One reason: may want to use sub-cliques to decrease
number of parameters
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Motivation for conditional random fields

Suppose Y is a set of variables that we want to estimate
(e.g. class labels)
Suppose X is a set of variables that are always observed,
i.e., we have empirical distribution P(X).

We could model the full joint distribution P(X,Y) as
P(X|Y)P(Y). But can be difficult to model P(Y), e.g. what
is the distribution of labels of natural images?
But, the joint distribution can equivalently be factored as
P(X,Y) = P(Y|X)P(X). Now we only need P(Y|X).
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Conditional random fields (CRFs)

Conditional random fields are undirected graphical models of
conditional distributions p(Y | X)

We typically show the graphical model using just the Y variables

Potentials are a function of X and Y

Can still use all the tools we’ve learned so far to model this joint
distribution over Y
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Formal definition

A CRF is a Markov network on variables X ∪ Y, which specifies
the conditional distribution

P(y | x) = 1
Z (x)

∏
c∈C

φc(xc ,yc)

with partition function

Z (x) =
∑

ŷ

∏
c∈C

φc(xc , ŷc).

As before, two variables in the graph are connected with an
undirected edge if they appear together in the scope of some
factor

The only difference with a standard Markov network is the
normalization term – before marginalized over X and Y, now only
over Y
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CRFs in computer vision

Example applications: segmentation, stereo, de-noising

Grids are particularly popular, e.g., pixels in an image with
4-connectivity

How would you define the clique potentials for a given image X
in order to perform image segmentation?
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Parameterization of CRFs

Factors may depend on a large number of variables
We typically parameterize each factor as a log-linear
function,

φc(xc ,yc) = exp{w · fc(xc ,yc)}

fc(xc ,yc) is a feature vector
w is a weight vector which is typically learned – we will
discuss this extensively in later lectures

Rachel Hodos Lab 4: Inference and Representation



Miscellaneous comments
Review of MRFs

Conditional Random Fields

NLP example: named-entity recognition

Given a sentence, determine the people and organizations
involved and the relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance
committee.”

Entities sometimes span multiple words. Entity of a word not
obvious without considering its context

CRF has one variable Xi for each word, which encodes the
possible labels of that word

The labels are, for example, “B-person, I-person, B-location,
I-location, B-organization, I-organization”

Having beginning (B) and within (I) allows the model to
segment adjacent entities
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NLP example: named-entity recognition
The graphical model looks like (called a skip-chain CRF):

There are three types of potentials:

φ1(Yt ,Yt+1) represents dependencies between neighboring
target variables [analogous to transition distribution in a HMM]

φ2(Yt ,Yt′) for all pairs t , t ′ such that xt = xt′ , because if a word
appears twice, it is likely to be the same entity

φ3(Yt ,X1, · · · ,XT ) for dependencies between an entity and the
word sequence [e.g., may have features taking into
consideration capitalization]

Notice that the graph structure changes depending on the
sentence!
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