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Miscellaneous comments

Clarification on I-equivalent Bayesian Networks

@ Theorem:

If DAG’s G and G’ have the same V-structures and the
same skeleton then /(G) = I(G).
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Clarification on I-equivalent Bayesian Networks

@ Theorem:
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Miscellaneous comments

Clarification on I-equivalent Bayesian Networks

@ Theorem:

If DAG’s G and G’ have the same V-structures and the
same skeleton then /(G) = I(G).

@ But the converse is not always true!
@ Counterexample: two different, fully connected triplets

@ Definition: immorality = v-structure where parents are not
connected

@ Revised statement that is true in both directions:

DAG’s G and G’ have the same immoralities and the
same skeleton iff I(G) = I(G).
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Miscellaneous comments

Q: Why don’t we have to worry about V-structures
when we factorize a distribution?

@ In order to go from a simple chain rule factorization:
P(Xq,..., Xn) = [[ P(Xil X1, .., Xi1)
to the canonical BN factorization,
P(Xi,.... Xn) = [ ] P(Xi|Pa(X}))
we only use the following type of conditional independence:
Xi L Xnon—desc|Pa(X;).

@ The conditional independence follows from d-separation.
@ So, we never condition on children, and hence don’t have
to worry about V-structures.
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Miscellaneous comments

Proof: Assume topological ordering... (Theorem 3.1
Koller & Friedman)

Let G be a BN structure over a set of random wariables X, and let P be a joint distribution over
the same space. If G is an I-map for P, then P factorizes according to G.

Proor Assume, without loss of generality, that X,..., X, is a topological ordering of the
variables in & relative to G (see definition 2.19). As in our example, we first use the chain rule
for probabilities:

P{Xll‘an]=HP(XHX1-.----X5—1)-

i=1

Now, consider one of the factors P:(X, | Xi,...,Xi—1). As G is an I-map for P, we have
that (X; L NonDescendantsx, | P:)f}"‘r‘) € Z(P). By assumption, all of X;’s parents are in the
set Xy,...,X,;—. Furthermore, none of X,'s descendants can possibly be in the set. Hence,

{Xi,... . Xis1}=Pax,u Z

where Z C NonDescendantsy, . From the local independencies for X; and from the decom-
position property (equation (2.8)) it follows that (X; L Z | Pax,). Hence, we have that

P(X,| Xy,.... X, 1) = P(X, | Pay,).

Applying this transformation to all of the factors in the chain rule decomposition, the result
follows. n
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Miscellaneous comments

Q: Is there an algorithm to construct all possible
graphs for a given set of independence statements?

No, but there is an algorithm to construct a minimal I-map given
some I(p) and some variable ordering:

Algorithm 3.2 Procedure to build a minimal I-map given an ordering
Procedure Build-Minimal-I-Map (
X1,...,X, !N an ordering of random variables in X’

T I Set of independencies
)

1 Set G to an empty graph over A’
2 fori=1,..., n
3 U+ {X4,..., Xi_1} I/ U is the current candidate for parents of X,
4 for U’ C {Xl ..... X1}
5 ifU cUand (X; L{Xy,..., X; 1} —U"|U") €T then
6 U« U’
7 Il At this stage U is a minimal set satisfying (X, L
X, i1} —U|U)
8 IF Now set U tu be the parents of X,
9 for X; e U
10 Add X; - X;t0 G
1 return G
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Review of MRFs

Markov Random Fields (undirected graphical models)

@ Rather than CPDs, we specify (non-negative) potential
functions over sets of variables associated with cliques C
of the graph,

p(Xy,...,Xn) = % H Pe(Xe)

ceC
@ Zis the partition function and normalizes the distribution:

Z= Z quc(ﬁc)

Xy,...,Xn CEC

@ Like CPD’s, ¢¢(Xc) can be represented as a table, but it is
not normalized

@ Called undirected graphical models, Markov random fields
(MRFs), or Markov networks

@ Independence given simply by graph separation
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Review of MRFs

Comparing BNs to MRFs

@ There are some /(p)’s that can be represented by MRFs
but not BNs, and vice versa. (Examples are v-structure,
and four friends’ hair color from yesterday).

BN MRF
\\ N // 4

@ Advantage of MRFs: marginalization and inference are
local operations

@ Disadvantage: hard to compute the partition function (sum
over all possible states), often resort to approximations

@ Disadvantage: no longer a natural way to sample data
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Review of MRFs

Remarks on MRFs

@ Cliques are not the same thing as CPD’s or marginals

@ However, setting a clique potential to O for a particular state
will result in probability being equal to 0

@ Edges are undirected but cliques potentials do not have to
be symmetric

@ Maximal cliques provide sufficient parametrization, so why
not only use maximal cliques?
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Review of MRFs

Remarks on MRFs

@ Cliques are not the same thing as CPD’s or marginals

@ However, setting a clique potential to O for a particular state
will result in probability being equal to 0

@ Edges are undirected but cliques potentials do not have to
be symmetric

@ Maximal cliques provide sufficient parametrization, so why
not only use maximal cliques?

@ One reason: may want to use sub-cliques to decrease
number of parameters
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Conditional Random Fields

Motivation for conditional random fields

@ Suppose Y is a set of variables that we want to estimate
(e.g. class labels)

@ Suppose X is a set of variables that are always observed,
i.e., we have empirical distribution P(X).
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@ Suppose Y is a set of variables that we want to estimate
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Conditional Random Fields

Motivation for conditional random fields

@ Suppose Y is a set of variables that we want to estimate
(e.g. class labels)

@ Suppose X is a set of variables that are always observed,
i.e., we have empirical distribution P(X).

@ We could model the full joint distribution P(X,Y) as
P(X|Y)P(Y). But can be difficult to model P(Y), e.g. what
is the distribution of labels of natural images?

@ But, the joint distribution can equivalently be factored as
P(X,Y) = P(Y|X)P(X). Now we only need P(Y|X).
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Conditional Random Fields

Conditional random fields (CRFs)

@ Conditional random fields are undirected graphical models of
conditional distributions p(Y | X)

@ We typically show the graphical model using just the Y variables
@ Potentials are a function of X and Y

@ Can still use all the tools we’ve learned so far to model this joint
distribution over Y
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Conditional Random Fields

Formal definition

@ A CRF is a Markov network on variables X U Y, which specifies
the conditional distribution

1
P(y ‘ x) = Z(X) H d)C(xCayC)
ceC
with partition function
Z(x) = Z H dc(Xe, Vo).
y ceC

@ As before, two variables in the graph are connected with an

undirected edge if they appear together in the scope of some
factor

@ The only difference with a standard Markov network is the
normalization term — before marginalized over X and Y, now only
over Y
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Conditional Random Fields

CRFs in computer vision

@ Example applications: segmentation, stereo, de-noising

@ Grids are particularly popular, e.g., pixels in an image with
4-connectivity

Eo‘i’iium NOUAC

-"1-‘-W
1

@ How would you define the clique potentials for a given image X
in order to perform image segmentation?
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Conditional Random Fields

Parameterization of CRFs

@ Factors may depend on a large number of variables

@ We typically parameterize each factor as a log-linear
function,

bc(Xe, Yc) = exp{w - fc(Xc, o)}
o fo(Xc,Yc) is a feature vector

@ w is a weight vector which is typically learned — we will
discuss this extensively in later lectures
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Conditional Random Fields

NLP example: named-entity recognition

@ Given a sentence, determine the people and organizations
involved and the relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance
committee.”

@ Entities sometimes span multiple words. Entity of a word not
obvious without considering its context

@ CRF has one variable X; for each word, which encodes the
possible labels of that word

@ The labels are, for example, “B-person, I-person, B-location,
I-location, B-organization, |-organization”

e Having beginning (B) and within (1) allows the model to
segment adjacent entities
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Conditional Random Fields

NLP example: named-entity recognition

The graphical model looks like (called a skip-chain CRF):

KEY
B-PER  Beein
LPER

B-LOC
I.LOC

OTH

'?i'@.'@v“i' ERE0
SICETSIOICISISISIO

There are three types of potentials:

@ ¢'(Y;, Yii1) represents dependencies between neighboring
target variables [analogous to transition distribution in a HMM]

@ ¢2(Y;, Yy) for all pairs t, ' such that x; = xy, because if a word
appears twice, it is likely to be the same entity

@ #3(Yy, Xy,---, X7) for dependencies between an entity and the
word sequence [e.g., may have features taking into
consideration capitalization
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