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Graph separation in MRFs

Given an undirected graph G, any distribution that can be
represented by G (i.e. written as a product over clique
potentials) must satisfy independence through separation.
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Proof of graph separation in MRFs
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Intuition

Information can only flow between variables along paths

Paths can be broken into sub-paths of length 3
We showed that conditioning on the middle variable of a
path makes that path inactive
Since MRFs are undirected, there is only one type of
length-3 path
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Formal definition of a CRF

A CRF is a Markov network on variables X ∪ Y, which specifies
the conditional distribution

P(y | x) = 1
Z (x)

∏
c∈C

φc(xc ,yc)

with partition function

Z (x) =
∑

ŷ

∏
c∈C

φc(xc , ŷc).

As before, two variables in the graph are connected with an
undirected edge if they appear together in the scope of some
factor

The only difference with a normal Markov network is the
normalization term

Common applications: NLP, computer vision
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Example #1 (NLP): named-entity recognition

Given a sentence, determine the people and organizations
involved and the relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance
committee.”

Entities sometimes span multiple words. Entity of a word not
obvious without considering its context

CRF has one variable Xi for each word, which encodes the
possible labels of that word

The labels are, for example, “B-person, I-person, B-location,
I-location, B-organization, I-organization”

Having beginning (B) and within (I) allows the model to
segment adjacent entities
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Example #1 (NLP): named-entity recognition
The graphical model looks like (called a skip-chain CRF):

There are three types of potentials:

φ1(Yt ,Yt+1) represents dependencies between neighboring
target variables [analogous to transition distribution in a HMM]

φ2(Yt ,Yt′) for all pairs t , t ′ such that xt = xt′ , because if a word
appears twice, it is likely to be the same entity

φ3(Yt ,X1, · · · ,XT ) for dependencies between an entity and the
word sequence [e.g., may have features taking into
consideration capitalization]

Notice that the graph structure changes depending on the
sentence!
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Example #2 (vision): Image segmentation

Problem: Given an image X ∈ Rm x n x 3, produce a labeling
Y ∈ {1, . . . , k}m x n.

The labels 1, . . . , k could correspond to e.g. {grass, sky, tree}.
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Example #2 (vision): Image segmentation

Approach: Define a grid-structured CRF to model P(Y|X), where
potentials are based on the intuition that neighboring pixels with
similar colors should probably have the same label.

Pairwise potentials over labels for neighboring pixels i , i + 1:

φi,i+1(yi , yi+1) = exp (1yi=yi+1‖xi − xi+1‖ − 1yi 6=yi+1‖xi − xi+1‖)

xi represents the 3-dimensional RGB for pixel i

Then find the MAP solution for Y:

Y ∗ = argmaxY P(Y|X)
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Belief Propagation

(Presented on board)
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Pruning nodes in Bayesian networks
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Pruning nodes in Bayesian networks
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