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10,000 foot view

Graphical models define local relationships between variables
and their neighbors, in order to efficiently model and make
inferences about the global system.
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Bayesian Networks

Parametrized by CPDs
Structure implies independence via d-separation
P-maps between some BN and P often exist but not always
Markov equivalence = same skeleton and immoralities
MLE parameters for discrete variables easy to compute
(parameter for each CPD entry is just fraction of
corresponding cases in observed data)
Examples: Naive Bayes, Logistic regression, QMR-DT
(disease and symptoms), HMM, LDA, gene regulatory
networks

Grade
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Markov Random Fields

Parametrized by potential functions
Structure implies independence via graph-separation
There are also distributions that MRFs can not perfectly
represent (e.g. v-structures)
Partition function difficult to compute
Examples: Grid-structured (Boltzmann machines, Ising),
Gaussian MRF (= multivariate normal)
Can moralize a BN to become an MRF by keeping same
edges and marrying the parents
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Conditional Random Fields

MRFs that model some conditional distribution P(Y |X )

Potential functions and even graph structure might vary
based on X
Partition function (Z ) is now a function of X .
Examples: Skip-chain CRF for named entity recognition;
Grid-structured CRF for image segmentation
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Exact Inference

Can be performed by marginalization, i.e.

p(Y |E = e) =
p(Y ,e)

p(e)

NP-hard (both MAP and marginal inference, for both BN
and MRF)
However, this is only worst case. Sometimes tractable, e.g.
HMMs.
Algorithm: variable elimination. Just a more efficient way to
compute all the sums.
Variable elimination ordering: also NP-hard, but there are
greedy heuristics, e.g. minimize # of induced edges.
Runtime is exponential in the treewidth (i.e. width of the
induced graph)
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Belief Propagation (exact for tree-structured MRFs)

Sum-product BP (from lab 5) can be used to compute all
marginals in linear time
Sum-product message:

mj→i(xi) =
∑

xj

φj(xj)φij(xi , xj)
∏

k∈N(j)\i

mk→j(xj)

Max-product BP (see next slide) just replace sum with max
and you can do MAP inference
Exact for tree-structured graphs, otherwise no guarantees
When used on non-tree structures (i.e. graphs with loops),
sometimes called Loopy Belief Propagation
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Max-product BP

Same as sum-product BP except that the messages are
now:

mj→i(xi) = max
xj

φj(xj)φij(xi , xj)
∏

k∈N(j)\i

mk→j(xj)

After passing all messages, can compute single node
max-marginals,

mi(xi) = φi(xi)
∏

j∈N(i)

mj→i(xi) ∝ max
xV\i

p(xV\i , xi)

If the MAP assignment x∗ is unique, can find it by locally
decoding each of the single node max-marginals, i.e.

x∗i = arg max
xi

mi(xi)
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Approximate Inference

Since exact inference is NP-hard, we often resort to
approximate inference
Two main approaches: 1) Monte Carlo methods, and 2)
Variational inference. We will discuss 2) later.
Monte Carlo methods generate samples from the posterior
These samples can then be used to approximate, e.g.:

The full posterior
Marginals
Expectations
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Sampling for Monte Carlo Methods (part I)

Unconditional sampling in BNs is straightforward
Accurate conditional sampling in BNs is trickier since
denominator p(E = e) could be very small
Sampling in MRFs is also not straightforward (Z )

Normalized importance sampling uses samples from q(x)
(easy to sample from) to approximate samples from p(x)
(hard to sample from)
Likelihood reweighting is a technique to generate
conditional samples from a BN, can be viewed as a
specific case of normalized importance sampling

Rachel Hodos Lab 6: Inference and Representation



Midterm review
Representation
Inference
Learning

Sampling for Monte Carlo Methods (part II)

Markov Chain Monte Carlo methods (MCMC) use adaptive
proposal distribution
Metropolis Hastings (MH) is a popular example of MCMC
Gibbs sampling is a special case of MH

Rachel Hodos Lab 6: Inference and Representation



Midterm review
Representation
Inference
Learning

Outline

1 Midterm review
Representation
Inference
Learning

Rachel Hodos Lab 6: Inference and Representation



Midterm review
Representation
Inference
Learning

EM algorithm

For MLE parameter estimation with hidden variables
Not exact because: 1) iterative, so results depends on
when you stop, and 2) can have local minima
However, guaranteed to converge (proved this in lab)
Algorithm:

1 Write down the complete log-likelihood log p(x, z; θ) in
such a way that it is linear in z

2 Initialize θ0, e.g. at random or using a good first guess
3 Repeat until convergence:

θt+1 = arg max
θ

M∑
m=1

Ep(zm|xm;θt )[log p(xm,Z; θ)]
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