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Today: Learning with hidden variables

Outline:
Unsupervised learning
Example: clustering
Review k-means clustering
Probabilistic perspective -> GMMs
EM algorithm for GMMs
General derivation of EM algorithm
Identifiability

Rachel Hodos Lecture 5: Inference and Representation



K -Means and Gaussian Mixture Models

David Rosenberg

New York University

June 15, 2015

David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43



K -Means Clustering

Example: Old Faithful Geyser

Looks like two clusters.
How to find these clusters algorithmically?
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K -Means Clustering

k-Means: By Example

Standardize the data.
Choose two cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(a).
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K -Means Clustering

k-means: by example

Assign each point to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(b).
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K -Means Clustering

k-means: by example

Compute new class centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(c).
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K -Means Clustering

k-means: by example

Assign points to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(d).
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K -Means Clustering

k-means: by example

Compute cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(e).
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K -Means Clustering

k-means: by example

Iterate until convergence.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(i).
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k-Means: Failure Cases

k-Means: Suboptimal Local Minimum

The clustering for k = 3 below is a local minimum, but suboptimal:

From Sontag’s DS-GA 1003, 2014, Lecture 8.
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Gaussian Mixture Models

Probabilistic Model for Clustering

Let’s consider a generative model for the data.
Suppose

1 There are k clusters.
2 We have a probability density for each cluster.

Generate a point as follows
1 Choose a random cluster z ∈ {1,2, . . . ,k}.

Z ∼Multi(π1, . . . ,πk ).

2 Choose a point from the distribution for cluster Z .

X | Z = z ∼ p(x | z).
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Gaussian Mixture Models

Gaussian Mixture Model (k = 3)

1 Choose Z ∈ {1,2,3} ∼Multi
(1

3 ,
1
3 ,

1
3

)
.

2 Choose X | Z = z ∼ N (X | µz ,Σz).
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Gaussian Mixture Models

Gaussian Mixture Model: Joint Distribution

Factorize joint according to Bayes net:

p(x ,z) = p(z)p(x | z)

= πzN (x | µz ,Σz)

πz is probability of choosing cluster z .
X | Z = z has distribution N(µz ,Σz).
z corresponding to x is the true cluster assignment.
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Gaussian Mixture Models

Latent Variable Model

Back in reality, we observe X , not (X ,Z ).
Cluster assignment Z is called a hidden variable.

Definition
A latent variable model is a probability model for which certain variables
are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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Gaussian Mixture Models

Model-Based Clustering

We observe X = x .
The conditional distribution of the cluster Z given X = x is

p(z | X = x) = p(x ,z)/p(x)

The conditional distribution is a soft assignment to clusters.
A hard assignment is

z∗ = argmin
z∈{1,...,k}

P(Z = z | X = x).

So if we have the model, clustering is trival.
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Gaussian Mixture Models

Estimating/Learning the Gaussian Mixture Model

We’ll use the common acronym GMM.
What does it mean to “have” or “know” the GMM?
It means knowing the parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

We have a probability model: let’s find the MLE.
Suppose we have data D= {x1, . . . ,xn}.
We need the model likelihood for D.
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Gaussian Mixture Models

Gaussian Mixture Model: Marginal Distribution

Since we only observe X , we need the marginal distribution:

p(x) =

k∑
z=1

p(x ,z)

=

k∑
z=1

πzN (x | µz ,Σz)

Note that p(x) is a convex combination of probability densities.
This is a common form for a probability model...
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Gaussian Mixture Models

Mixture Distributions (or Mixture Models)

Definition
A probability density p(x) represents a mixture distribution or mixture
model, if we can write it as a convex combination of probability
densities. That is,

p(x) =
k∑

i=1

wipi (x),

where wi > 0,
∑k

i=1wi = 1, and each pi is a probability density.

In our Gaussian mixture model, X has a mixture distribution.
More constructively, let S be a set of probability distributions:

1 Choose a distribution randomly from S .
2 Sample X from the chosen distribution.

Then X has a mixture distribution.
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The EM Algorithm for GMM

EM Algorithm for GMM: Overview

1 Initialize parameters µ,Σ,π.
2 “E step”. Evaluate the responsibilities using current parameters:

γ
j
i =

πjN (xi | µj ,Σj)∑k
c=1πcN (xi | µc ,Σc)

,

for i = 1, . . . ,n and j = 1, . . . ,k .
3 “M step”. Re-estimate the parameters using responsibilities:

µnew
c =

1
nc

n∑
i=1

γci xi

Σnew
c =

1
nc

n∑
i=1

γci (xi −µMLE)(xi −µMLE)
T

πnew
c =

nc
n
,

4 Repeat from Step 2, until log-likelihood converges.
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The EM Algorithm for GMM

EM for GMM

Initialization

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

After 5 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

After 20 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

Relation to K -Means

EM for GMM seems a little like k-means.
In fact, there is a precise correspondence.
First, fix each cluster covariance matrix to be σ2I .
As we take σ2→ 0, the update equations converge to doing k-means.
If you do a quick experiment yourself, you’ll find

Soft assignments converge to hard assignments.
Has to do with the tail behavior (exponential decay) of Gaussian.
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Overview of EM algorithm

Motivation:
With hidden variables, MLE is harder to compute (not
always closed form solution).
Also, we may want to estimate the expected states of the
hidden variables.

EM algorithm can help with both
EM is iterative algorithm to maximixe log-likelihood
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