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Today: Learning with hidden variables

@ Ouitline:

e Unsupervised learning

Example: clustering

Review k-means clustering
Probabilistic perspective -> GMMs
EM algorithm for GMMs

General derivation of EM algorithm
Identifiability
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Example: Old Faithful Geyser

Old Faithful Geyser Eruptions
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@ Looks like two clusters.

@ How to find these clusters algorithmically?
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k-Means: By Example

o Standardize the data.

@ Choose two cluster centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(a).
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K-Means Clustering

k-means: by example

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).
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K-Means Clustering

k-means: by example

@ Compute new class centers.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(c).
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K-Means Clustering

k-means: by example

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).
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K-Means Clustering

k-means: by example

@ Compute cluster centers.

2
0 °
Sge .. % °
Xy
®
-2
-2 0 2

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).
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K-Means Clustering

k-means: by example

@ lterate until convergence.
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From Bishop's Pattern recognition and machine learning, Figure 9.1(i).
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k-Means: Failure Cases

k-Means: Suboptimal Local Minimum

@ The clustering for k =3 below is a local minimum, but suboptimal:
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From Sontag's DS-GA 1003, 2014, Lecture 8.

David Rosenberg (New York University)| DS-GA 1003 June 15, 2015

19 / 43



Probabilistic Model for Clustering

@ Let's consider a generative model for the data.
@ Suppose

@ There are k clusters.
@ We have a probability density for each cluster.

e Generate a point as follows
@ Choose a random cluster z €{1,2, ..., k}.
o Z~Multi(rty, ..., 7).
@ Choose a point from the distribution for cluster Z.
o X|Z=z~p(x|2z).
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Gaussian Mixture Model (k = 3)

© Choose Z €{1,2,3}~Multi (3,3, 3).
© Choose X|Z=z~N(X|u,x,).

Mixture of Three Gaussians
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Gaussian Mixture Model: Joint Distribution

@ Factorize joint according to Bayes net:

VA
p(x,z) = p(z)p(x]|z)
= 1 N(x[pz L)
@ 71, is probability of choosing cluster z.
@ X | Z =z has distribution N(u,, XZ,).
X @ z corresponding to x is the true cluster assignment.
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Latent Variable Model

@ Back in reality, we observe X, not (X, Z).

@ Cluster assignment Z is called a hidden variable.

Definition
A latent variable model is a probability model for which certain variables
are never observed.

@ e.g. The Gaussian mixture model is a latent variable model.
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Model-Based Clustering

@ We observe X = x.

@ The conditional distribution of the cluster Z given X = x is

p(z| X =x) = p(x,z)/p(x)

@ The conditional distribution is a soft assignment to clusters.
@ A hard assignment is

¥ = argmin P(Z =2z | X =x).

@ So if we have the model, clustering is trival.

David Rosenberg (New York University)| DS-GA 1003 June 15, 2015 24 / 43



Estimating/Learning the Gaussian Mixture Model

We'll use the common acronym GMM.
What does it mean to “have” or “know” the GMM?

@ It means knowing the parameters

Cluster probabilities : = (7m,...,70%)
Cluster means: w=(p1,..., k)
Cluster covariance matrices: L =(Z1,...%)

We have a probability model: let's find the MLE.
Suppose we have data D ={xq,..., xa}-
We need the model likelihood for D.
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Gaussian Mixture Model: Marginal Distribution

@ Since we only observe X, we need the marginal distribution:
k
plx) = > plxz)
z=1

k
= ZT[ZN(X| Hz:zz)
z=1

@ Note that p(x) is a convex combination of probability densities.

@ This is a common form for a probability model...
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Gaussian Mixture Models

Mixture Distributions (or Mixture Models)

Definition

A probability density p(x) represents a mixture distribution or mixture
model, if we can write it as a convex combination of probability
densities. That is,

k
p(x) =) wpi(x),
i=1

where w; > 0, Zf'(:l w; =1, and each p; is a probability density.

@ In our Gaussian mixture model, X has a mixture distribution.
@ More constructively, let S be a set of probability distributions:

© Choose a distribution randomly from S.
@ Sample X from the chosen distribution.

@ Then X has a mixture distribution.
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EM Algorithm for GMM: Overview

@ |Initialize parameters p, X, 7.

@ "E step”. Evaluate the responsibilities using current parameters:

Y= kajN(Xi |1y, %)) |
Zczl e N (X | e, Ze)
fori=1,...,nand j=1,... k.
© "M step’. Re-estimate the parameters using responsibilities:

n
new __ 1 co.
He = YiXi
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@ Repeat from Step 2, until log-likelihood converges.
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The EM Algorithm for GMM

EM for GMM

@ Initialization
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From Bishop's Pattern recognition and machine learning, Figure 9.8.
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The EM Algorithm for GMM

EM for GMM

o First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o First soft assignment:

-2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 5 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 20 rounds of EM:
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From Bishop's Pattern recognition and machine learning, Figure 9.8.
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Relation to K-Means

EM for GMM seems a little like k-means.
In fact, there is a precise correspondence.
First, fix each cluster covariance matrix to be o?2/.

As we take 02 — 0, the update equations converge to doing k-means.

If you do a quick experiment yourself, you'll find

e Soft assignments converge to hard assignments.
e Has to do with the tail behavior (exponential decay) of Gaussian.
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Overview of EM algorithm

@ Motivation:

e With hidden variables, MLE is harder to compute (not
always closed form solution).

e Also, we may want to estimate the expected states of the
hidden variables.

@ EM algorithm can help with both
@ EM is iterative algorithm to maximixe log-likelihood

Rachel Hodos Lecture 5: Inference and Representation



	Lecture5_v2
	Lecture5_combined
	Lecture5_combined
	Lecture5
	Lecture5_combined
	13.mixture-models



	Lecture5_v2.pdf
	Lecture5_combined
	Lecture5_combined.pdf
	Lecture5





