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Today: learning undirected graphical models

1 Learning MRFs

a. Reminder of exponential families
b. Feature-based (log-linear) representation of MRFs
c. Maximum likelihood estimation
d. Maximum entropy view

2 Getting around complexity of inference

a. Using approximate inference within learning
b. Pseudo-likelihood
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Reminder of the exponential family

Recall the definition of probability distributions in the exponential family:

p(x; η) = h(x) exp{η · f(x)− lnZ (η)}

f(x) are called the sufficient statistics

In the exponential family, there is a one-to-one correspondance between
distributions p(x; η) and marginal vectors Ep[f(x)]

For example, when p is a Gaussian distribution,

p(x;µ,Σ) =
1

(2π)k/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
then f(x) = [x1, x2, . . . , xk , x

2
1 , x1x2, x1x3, . . . , x

2
2 , x2x3, . . .]

The expectation of f(x) gives the first and second-order (non-central)
moments, from which one can solve for µ and Σ
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Properties of exponential families

The derivative of the log-partition function is equal to the expectation of the
sufficient statistic vector (i.e. the distribution’s marginals):

∂ηi lnZ (η) = ∂ηi ln
∑
x

exp{η · f(x)}

=
1∑

x exp{η · f(x)}∂ηi
∑
x

exp{η · f(x)}

=
1∑

x exp{η · f(x)}
∑
x

∂ηi exp{η · f(x)}

=
1∑

x exp{η · f(x)}
∑
x

exp{η · f(x)}∂ηi η · f(x)

=
1∑

x exp{η · f(x)}
∑
x

exp{η · f(x)}fi (x)

=
∑
x

exp{η · f(x)}∑
x̂ exp{η · f(x̂)} fi (x) =

∑
x

p(x)fi (x) = Ep[fi (x)].
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Recall: ML estimation in Bayesian networks

Maximum likelihood estimation: maxθ `(θ;D), where

`(θ;D) = log p(D; θ) =
∑
x∈D

log p(x; θ)

=
∑
i

∑
x̂pa(i)

∑
x∈D:

xpa(i)=x̂pa(i)

log p(xi | x̂pa(i))

In Bayesian networks, we have the closed form ML solution:

θML
xi |xpa(i) =

Nxi ,xpa(i)∑
x̂i
Nx̂i ,xpa(i)

where Nxi ,xpa(i) is the number of times that the (partial) assignment xi , xpa(i)
is observed in the training data

We were able to estimate each CPD independently because the objective
decomposes by variable and parent assignment
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Parameter estimation in Markov networks

How do we learn the parameters of an Ising model?

=  +1

=  -1

p(x1, · · · , xn) =
1

Z
exp

(∑
i<j

wi,jxixj −
∑
i

uixi
)

What about for a skip-chain CRF?
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Bad news for Markov networks

The global normalization constant Z (θ) kills decomposability:

θML = arg max
θ

log
∏
x∈D

p(x; θ)

= arg max
θ

∑
x∈D

(∑
c

log φc(xc ; θ)− logZ (θ)

)

= arg max
θ

(∑
x∈D

∑
c

log φc(xc ; θ)

)
− |D| logZ (θ)

The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

Solving for the parameters becomes much more complicated
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What are the parameters?

Parameterize φc(xc ; θ) using a log-linear parameterization:

Single weight vector w ∈ Rd that is used globally
For each potential c , a vector-valued feature function fc(xc) ∈ Rd

Then, φc(xc ;w) = exp(w · fc(xc))

Example: discrete-valued MRF with only edge potentials, where each
variable takes k states

Let d = k2|E |, and let wi,j,xi ,xj = log φij(xi , xj)
Let fi,j(xi , xj) have a 1 in the dimension corresponding to (i , j , xi , xj)
and 0 elsewhere

The joint distribution is in the exponential family!

p(x;w) = exp{w · f(x)− logZ (w)},

where f (x) =
∑

c fc(xc) and Z (w) =
∑

x exp{∑c w · fc(xc)}
This formulation allows for parameter sharing

David Sontag (NYU) Inference and Representation Lecture 10, Nov. 17, 2015 8 / 24



Log-likelihood for log-linear models

θML = arg max
θ

(∑
x∈D

∑
c

log φc(xc ; θ)

)
− |D| logZ (θ)

= arg max
w

(∑
x∈D

∑
c

w · fc(xc)

)
− |D| logZ (w)

= arg max
w

w ·
(∑

x∈D

∑
c

fc(xc)

)
− |D| logZ (w)

The first term is linear in w

The second term is also a function of w:

logZ (w) = log
∑
x

exp

(
w ·
∑
c

fc(xc)

)
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Log-likelihood for log-linear models

logZ (w) = log
∑
x

exp

(
w ·
∑
c

fc(xc)

)
logZ (w) does not decompose

No closed form solution; even computing likelihood requires inference

Letting f(x) =
∑

c fc(xc), we showed (slide 4) that:

∇w logZ (w) = Ep(x;w)[f(x)] =
∑
c

Ep(xc ;w)[fc(xc)]

Thus, the gradient of the log-partition function can be computed by
inference, computing marginals with respect to the current parameters w

Similarly, you can show that 2nd derivative of the log-partition function
gives the second-order moments, i.e.

∇2 logZ (w) =
(
Ep(x;w)[f

i (x)f j(x)]
)
ij

= cov[f(x)]

Since covariance matrices are always positive semi-definite, this proves that
logZ (w) is convex (so − logZ (w) is concave)
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Solving the maximum likelihood problem in MRFs

`(w;D) =
1

|D|w ·
(∑

x∈D

∑
c

fc(xc)

)
− logZ (w)

First, note that the weights w are unconstrained, i.e. w ∈ Rd

The objective function is jointly concave. Apply any convex optimization
method to learn!

Can use gradient ascent, stochastic gradient ascent, quasi-Newton
methods such as limited memory BFGS (L-BFGS)

Let’s study some properties of the ML solution!

d

dwk
`(w;D) =

1

|D|
∑
x∈D

∑
c

(fc(xc))k −
∑
c

Ep(xc ;w)[(fc(xc))k ]

=
∑
c

1

|D|
∑
x∈D

(fc(xc))k −
∑
c

Ep(xc ;w)[(fc(xc))k ]
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The gradient of the log-likelihood

∂

∂wk
`(w;D) =

∑
c

1

|D|
∑
x∈D

(fc(xc))k −
∑
c

Ep(xc ;w)[(fc(xc))k ]

Difference of expectations!

Consider the earlier pairwise MRF example. This then reduces to:

∂

∂wi,j,x̂i ,x̂j

`(w;D) =

(
1

|D|
∑
x∈D

1[xi = x̂i , xj = x̂j ]

)
− p(x̂i , x̂j ;w)

Setting derivative to zero, we see that for the maximum likelihood
parameters wML, we have

p(x̂i , x̂j ;w
ML) =

1

|D|
∑
x∈D

1[xi = x̂i , xj = x̂j ]

for all edges i j ∈ E and states x̂i , x̂j

Model marginals for ML solution equal the empirical marginals!

Called moment matching, and is a property of maximum likelihood
learning in exponential families
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Gradient ascent requires repeated marginal inference,
which in many models is hard!

We will return to this shortly.
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Maximum entropy (MaxEnt)

We can approach the modeling task from an entirely different point of view

Suppose we know some expectations with respect to a (fully general)
distribution p(x):

(true)
∑
x

p(x)fi (x), (empirical)
1

|D|
∑
x∈D

fi (x) = αi

Assuming that the expectations are consistent with one another, there may
exist many distributions which satisfy them. Which one should we select?

The most uncertain or flexible one, i.e., the one with maximum entropy.

This yields a new optimization problem:

max
p

H(p(x)) = −
∑
x

p(x) log p(x)

s.t.
∑
x

p(x)fi (x) = αi∑
x

p(x) = 1 (strictly concave w.r.t. p(x))
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What does the MaxEnt solution look like?

To solve the MaxEnt problem, we form the Lagrangian:

L = −
∑
x

p(x) log p(x)−
∑
i

λi

(∑
x

p(x)fi (x)− αi

)
− µ

(∑
x

p(x)− 1

)
Then, taking the derivative of the Lagrangian,

∂L

∂p(x)
= −1− log p(x)−

∑
i

λi fi (x)− µ

And setting to zero, we obtain:

p∗(x) = exp

(
−1− µ−

∑
i

λi fi (x)

)
= e−1−µe−

∑
i λi fi (x)

From the constraint
∑

x p(x) = 1 we obtain e1+µ =
∑

x e
−

∑
i λi fi (x) = Z (λ)

We conclude that the maximum entropy distribution has the form
(substituting wi = −λi )

p∗(x) =
1

Z (w)
exp(

∑
i

wi fi (x))
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Equivalence of maximum likelihood and maximum entropy

Feature constraints + MaxEnt ⇒ exponential family!

We have seen a case of convex duality:

In one case, we assume exponential family and show that ML implies
model expectations must match empirical expectations

In the other case, we assume model expectations must match empirical
feature counts and show that MaxEnt implies exponential family
distribution

Can show that one is the dual of the other, and thus both obtain the
same value of the objective at optimality (no duality gap)

Besides providing insight into the ML solution, this also gives an
alternative way to (approximately) solve the learning problem
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Chow-Liu algorithm for MRF structure learning
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Figure 7. Model learned for SUN 09. Red edges denote negative correlation between classes. The thickness of each edge represents the

strength of the link.
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Table 1. Average precision-recall. Baseline) baseline detector [5];

Gist) baseline and gist [20]; Context) our context model; [4]) re-

sults from [4] (the baseline in [4] is the same as our baseline, but

performances slightly differ); Bound) Maximal APR that can be

achieved given current max recall.

the baseline detector and not for learning the tree model.

In this experiment we use 107 object detectors. These
detectors span from regions (e.g., road, sky, buildings) to
well defined objects (e.g., car, sofa, refrigerator, sink, bowl,
bed) and highly deformable objects (e.g., river, towel, cur-
tain). The database contains 4317 test images. Objects have
a large range of difficulties due to variations in shape, but
also in sizes and frequencies. The distribution of objects in
the test set follows a power law (the number of instances for
object k is roughly 1/k) as shown in Figure 2.

Context learned from training images Figure 7 shows
the learned tree relating the 107 objects. A notable differ-
ence from the tree learned for PASCAL 07 (Figure 4) is that
the proportion of positive correlations is larger. In the tree
learned from PASCAL 07, 10 out of 19 edges, and 4 out
of the top 10 strongest edges have negative relationships.
In contrast, 25 out of 106 edges and 7 out of 53 (≈ 13%)
strongest edges in the SUN tree model have negative rela-
tionships. In PASCAL 07, most objects are related by re-
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Figure 5. Image annotation results for PASCAL 07 and SUN 09.

a-b) Percentage of images in which the top N most confident de-

tections are all correct. The numbers on top of the bars indicate

the number of images that contain at least N ground-truth object

instances. c-d) Percentage of images in which the top N most con-

fident object presence predictions are all correct. The numbers on

top of the bars indicate the number of images that contain at least

N different ground-truth object categories.
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Figure 6. Improvement of context model over the baseline. Object

categories are sorted by the improvement in the localization task.

pulsion because most images contain only few categories.
In SUN 09, there is a lot more opportunities to learn posi-
tive correlations between objects. From the learned tree, we
can see that some objects take the role of dividing the tree

Let’s try to learn the structure of a tree-structured MRF:

max
T

max
θT

∑
x∈D

log pT (x; θT ).

Because of moment matching, for a fixed tree T , the maximum likelihood
parameters, i.e.

θML
T = arg max

θT

∑
x∈D

log pT (x; θT ).

have pT (xi , xj ; θ
ML
T ) = p̂(xi , xj), the latter computed from the data D
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Chow-Liu algorithm for MRF structure learning

For the special case of trees, the mapping µ→ θ has a simple closed-form
solution:

pT (x) =
∏

(i,j)∈T

pT (xi , xj)

pT (xi )pT (xj)

∏
j∈V

pT (xj)

Substituting p̂T (x) into
∑

x∈D log pT (x; θT ), this then gives the following
optimization problem:

max
T

∑
x∈D

log

 ∏
(i,j)∈T

p̂(xi , xj)

p̂(xi )p̂(xj)

∏
j∈V

p̂(xj)


which can be solved using a maximum spanning tree algorithm

For general graphs, solving the maximum entropy problem is itself intractable
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How can we get around the complexity of inference during learning?

David Sontag (NYU) Inference and Representation Lecture 10, Nov. 17, 2015 19 / 24



Monte Carlo methods

Recall the original learning objective

`(w;D) =
1

|D|w ·
(∑

x∈D

∑
c

fc(xc)

)
− logZ (w)

Use any of the sampling approaches (e.g., Gibbs sampling) that we discussed
in Lecture 6

All we need for learning (i.e., to compute the derivative of `(w,D)) are
marginals of the distribution

No need to ever estimate logZ (w)
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Using approximations of the log-partition function

We can substitute the original learning objective

`(w;D) =
1

|D|w ·
(∑

x∈D

∑
c

fc(xc)
)
− logZ (w)

with one that uses a tractable approximation of the log-partition function:

˜̀(w;D) =
1

|D|w ·
(∑

x∈D

∑
c

fc(xc)
)
− ˜logZ (w)

It is possible to come up with a convex relaxation that provides an upper
bound on the log-partition function,

logZ (w) ≤ ˜logZ (w)

(e.g., tree-reweighted belief propagation, log-determinant relaxation)

Using this, we obtain a lower bound on the learning objective

`(w;D) ≥ ˜̀(w;D)

Again, to compute the derivatives we only need pseudo-marginals from the
variational inference algorithm
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Pseudo-likelihood

Alternatively, can we come up with a different objective function (i.e., a
different estimator) which succeeds at learning while avoiding inference
altogether?

Pseudo-likelihood method (Besag 1971) yields an exact solution if the data
is generated by a model in our model family p(x; θ∗) and |D| → ∞ (i.e., it is
consistent)

Note that, via the chain rule,

p(x;w) =
∏
i

p(xi |x1, . . . , xi−1;w)

We consider the following approximation:

p(x;w) ≈
∏
i

p(xi |x1, . . . , xi−1, xi+1, . . . , xn;w) =
∏
i

p(xi |x−i ;w)

where we have added conditioning over additional variables
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Pseudo-likelihood

The pseudo-likelihood method replaces the likelihood,

`(θ;D) =
1

|D| log p(D; θ) =
1

|D|

|D|∑
m=1

log p(xm; θ)

with the following approximation:

`PL(w;D) =
1

|D|

|D|∑
m=1

n∑
i=1

log p(xmi | xmN(i);w)

(we replaced x−i with xN(i), i ’s Markov blanket)

For example, suppose we have a pairwise MRF. Then,

p(xmi | xmN(i);w) =
1

Z (xmN(i);w)
e
∑

j∈N(i) θij (x
m
i ,x

m
j ), Z (xmN(i);w) =

∑
x̂i

e
∑

j∈N(i) θij (x̂i ,x
m
j )

More generally, and using the log-linear parameterization, we have:

log p(xmi | xmN(i);w) = w ·
∑
c:i∈c

fc(xmc )− logZ (xmN(i);w)
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Pseudo-likelihood

This objective only involves summation over xi and is tractable

Has many small partition functions (one for each variable and each setting
of its neighbors) instead of one big one

It is still concave in w and thus has no local maxima

Assuming the data is drawn from a MRF with parameters w∗, can show that
as the number of data points gets large, wPL → w∗
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