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Today: learning undirected graphical models

@ Learning MRFs
a. Reminder of exponential families
b. Feature-based (log-linear) representation of MRFs
c. Maximum likelihood estimation
d. Maximum entropy view
@ Getting around complexity of inference

a. Using approximate inference within learning
b. Pseudo-likelihood
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Reminder of the exponential family

@ Recall the definition of probability distributions in the exponential family:
p(x; 1) = h(x) exp{n - f(x) —In Z(n)}
f(x) are called the sufficient statistics

@ In the exponential family, there is a one-to-one correspondance between
distributions p(x;n) and marginal vectors E,[f(x)]

@ For example, when p is a Gaussian distribution,

. _ 1 1 Ty-1
p(x; p, X) = WQXP (‘2(’( —p) T (x— U))
then F(x) = [X1, X2, - - -, Xk, X2, X1X2, X1X3, + + -, X3, X0 X3, - - ]

@ The expectation of f(x) gives the first and second-order (non-central)
moments, from which one can solve for 1 and ¥
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Properties of exponential families

The derivative of the log-partition function is equal to the expectation of the
sufficient statistic vector (i.e. the distribution’s marginals):

Oy InZ(n) = 0Opln Z exp{n - f(x)}

1
= W&?/ZGXP{U f(x)}

_ m >0 exeln- f)}
= W Z eXP{ﬂ ,-77 ' f(x)
_ W Z exp{n - f(x)}fi(x)

RS o) 0 - Bl

X
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Recall: ML estimation in Bayesian networks

@ Maximum likelihood estimation:  maxg ¢(6; D), where

06;D) =logp(D;0) = Z log p(x; 0)
x€D

DD D logp(xi | &pai)

i )’Epa(i) XGQ:
Xpa(i) =%pa(i)

@ In Bayesian networks, we have the closed form ML solution:

ML NXtha(;)

Xi |Xpa(i) Z% mexpa(/)
Yvhere NX,,XP?(,.) is the pu.mber of times that the (partial) assignment x;, X,,(j)
is observed in the training data

@ We were able to estimate each CPD independently because the objective
decomposes by variable and parent assignment
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Parameter estimation in Markov networks

@ How do we learn the parameters of an Ising model?

O=+1
O=-

1
p(x1,  ,Xn) = 7 exp (Z Wi jXiXj — Z u,-x,-)

i<j i
@ What about for a skip-chain CRF?

B-PER  Begin person name

IPER  Within person name

B-LOC Begin location name

IL0C Within location name
Not an entitiy
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Bad news for Markov networks

@ The global normalization constant Z(6) kills decomposability:

oML —  argmax log H p(x; 0)
o xeD
= arg m;\xz <Z log pc(xc; 0) — log Z(Q))
xeD c
= argmax <Z Z log ¢C(xc;9)> — |D|log Z(0)
xeD ¢

@ The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

@ Solving for the parameters becomes much more complicated
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What are the parameters?

@ Parameterize ¢.(xc;0) using a log-linear parameterization:

o Single weight vector w € R? that is used globally
o For each potential c, a vector-valued feature function f.(x.) € R?
o Then, ¢c(xc;w) = exp(w - f(x.))

@ Example: discrete-valued MRF with only edge potentials, where each
variable takes k states

o Let d = Kk?|E|, and let w; . . = log ¢j(xi,x;)
o Let fi j(xj,x;) have a 1 in the dimension corresponding to (7, /, X;, x;)
and 0 elsewhere

@ The joint distribution is in the exponential family!
p(x; w) = exp{w - f(x) — log Z(w)},

where f(x) = > _fo(xc) and Z(w) =" exp{d_ . w- fc(xc)}

@ This formulation allows for parameter sharing
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Log-likelihood for log-linear models

oMt = arg max (Z Z log dc(Xc; 9)) — |Dllog Z(6)

x€D ¢
= argmax (Z Zw . fc(xc)> — |D|log Z(w)
x€D ¢
= argmax w- (Z ch(xc)> — |D|log Z(w)
x€D ¢

@ The first term is linear in w

@ The second term is also a function of w:

log Z(w IogZexp (w : ch(xc)>
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Log-likelihood for log-linear models

log Z(w) = log Z exp (w : Z fc(xc)>

log Z(w) does not decompose

o No closed form solution; even computing likelihood requires inference

Letting f(x) = >__fc(xc), we showed (slide 4) that:

Vi 10g Z(W) = Epu [F(X)] = Y Epixeiuy e (xc)]

c
Thus, the gradient of the log-partition function can be computed by
inference, computing marginals with respect to the current parameters w

Similarly, you can show that 2nd derivative of the log-partition function
gives the second-order moments, i.e.

V2 log Z(w) = (EP(X;W)[fi(x) fj(x)])ij = cov[f(x)]

@ Since covariance matrices are always positive semi-definite, this proves that
log Z(w) is convex (so — log Z(w) is concave)

David Sontag (NYU) Inference and Representation Lecture 10, Nov. 17, 2015 10 / 24



Solving the maximum likelihood problem in MRFs

{(w; D) |D| (ZZf X¢ > — log Z(w)

x€D ¢

@ First, note that the weights w are unconstrained, i.e. w € Rd

@ The objective function is jointly concave. Apply any convex optimization
method to learn!

@ Can use gradient ascent, stochastic gradient ascent, quasi-Newton
methods such as limited memory BFGS (L-BFGS)

Let’s study some properties of the ML solution!

diwke(w D) = |D|zzf(xc Y= D By (Fe(xc))i]

xeD c

= Z D] Z fe(xc))k — ZEP(XC;W)[(fC(XC))k]

xeD
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The gradient of the log-likelihood

0

Tka w; D Z |D| Z C(XC k — zc:]Ep(xc;w)[(fc(XC))k]

xeD

Difference of expectatlons!

@ Consider the earlier pairwise MRF example. This then reduces to:

a A
maw P) <|D| Z 1xi = %, = XJ]) p(%i, X;; w)

xeD

@ Setting derivative to zero, we see that for the maximum likelihood
parameters wVl we have
p()?,,)?J,W |D|21[X’ X”XJ_XJ]
x€D
for all edges ij € E and states X, Xj
@ Model marginals for ML solution equal the empirical marginals!
@ Called moment matching, and is a property of maximum likelihood

learning in exponential families
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Gradient ascent requires repeated marginal inference,
which in many models is hard!

We will return to this shortly.
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Maximum entropy (MaxEnt)

@ We can approach the modeling task from an entirely different point of view

@ Suppose we know some expectations with respect to a (fully general)
distribution p(x):

(true) Z p(x)fi(x), (empirical) D Z fi(x

xeD

@ Assuming that the expectations are consistent with one another, there may
exist many distributions which satisfy them. Which one should we select?

The most uncertain or flexible one, i.e., the one with maximum entropy.

@ This yields a new optimization problem:

max H(p(x) Z p(x) log p(x)

st Y p(x)fi(x) = a;

Zp(x) =1 (strictly concave w.r.t. p(x))
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What does the MaxEnt solution look like?

@ To solve the MaxEnt problem, we form the Lagrangian:

L==2_ p(x)logp(x) = >_X (Z p(x)fi(x) — af> — (Z p(x) - 1)

@ Then, taking the derivative of the Lagrangian,

aL
op(x) —1 —log p(x) — zi:/\iﬁ(x) —H

@ And setting to zero, we obtain:

P (x) = exp (—1 =y A,-f,-(x)> oLt TN

@ From the constraint 3°, p(x) = 1 we obtain el*# = 3" e~ LiNik) = Z())
@ We conclude that the maximum entropy distribution has the form
(substituting w; = —\;)

Pr(x) = (lw) exp(z wif;(x))
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Equivalence of maximum likelihood and maximum entropy

o Feature constraints + MaxEnt = exponential family!
@ We have seen a case of convex duality:

e In one case, we assume exponential family and show that ML implies
model expectations must match empirical expectations

@ In the other case, we assume model expectations must match empirical
feature counts and show that MaxEnt implies exponential family
distribution

@ Can show that one is the dual of the other, and thus both obtain the
same value of the objective at optimality (no duality gap)

@ Besides providing insight into the ML solution, this also gives an
alternative way to (approximately) solve the learning problem
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Chow-Liu algorithm for MRF structure learning

@ Let's try to learn the structure of a tree-structured MRF:

max max Z log p7(x; 07).
xeD

@ Because of moment matching, for a fixed tree T, the maximum likelihood
parameters, i.e.

oML = arg max ; log pr(x; 07).
X

have pr(x;, x;; 0¥L) = p(x;, x;), the latter computed from the data D
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Chow-Liu algorithm for MRF structure learning

@ For the special case of trees, the mapping © — 6 has a simple closed-form

solution:
PT XHXJ
pr(x)= ][] H pr(X;)
et pr(xi)pT(x;)

@ Substituting pr(x) into > 5 log pr(x; 07), this then gives the following
optimization problem:

mpx S tog | [T £009, j 11769)
cv

X€D (iJ)eT p(xi)p(x)

which can be solved using a maximum spanning tree algorithm

@ For general graphs, solving the maximum entropy problem is itself intractable
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How can we get around the complexity of inference during learning?
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Monte Carlo methods

@ Recall the original learning objective
1
{(w; D) = ﬁW . (Z ch(xc)> — log Z(w)
x€D ¢
@ Use any of the sampling approaches (e.g., Gibbs sampling) that we discussed

in Lecture 6

@ All we need for learning (i.e., to compute the derivative of {(w, D)) are
marginals of the distribution

@ No need to ever estimate log Z(w)
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Using approximations of the log-partition function

@ We can substitute the original learning objective
Uw; D) = (ZZf xc)—logZ(w)
Cc
with one that uses a tractable approximation of the log-partition function:

I(w; D) = (ZZf xc)—logf(w)

@ |t is possible to come up with a convex relaxation that provides an upper
bound on the log-partition function,

log Z(w) < log Z(w)
(e.g., tree-reweighted belief propagation, log-determinant relaxation)
@ Using this, we obtain a lower bound on the learning objective
{(w; D) > {(w; D)

@ Again, to compute the derivatives we only need pseudo-marginals from the
variational inference algorithm
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Pseudo-likelihood

@ Alternatively, can we come up with a different objective function (i.e., a
different estimator) which succeeds at learning while avoiding inference
altogether?

@ Pseudo-likelihood method (Besag 1971) yields an exact solution if the data
is generated by a model in our model family p(x; 6*) and |D| — oo (i.e., it is
consistent)

@ Note that, via the chain rule,

p(x;w) = H p(xilx1, ..., Xi—1; W)
i
@ We consider the following approximation:
p(xiw) = [T P01t Xi 1 X1 o w) = [ POl w)
i i

where we have added conditioning over additional variables
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Pseudo-likelihood

@ The pseudo-likelihood method replaces the likelihood,

D]
£0;D) = |D| log p(D; 0) |D| Z log p(x™;
with the following approximation:
ID|
Lpi(w; D) =D ZIZ;|OEP(X'" | XNy W)

(we replaced x_; with xy(j), i's Markov blanket)

@ For example, suppose we have a pairwise MRF. Then,

m m 1 e 0 (X xT m e 05 (RiyxT
PO | X W) = iy 700 M, 2Ty w) = 3 eSiena )

@ More generally, and using the log-linear parameterization, we have:

log p(x{" | xp(iy: W) = w - Zf xZ") — log Z(xp(;y: w)

cii€c
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Pseudo-likelihood

@ This objective only involves summation over x; and is tractable

@ Has many small partition functions (one for each variable and each setting
of its neighbors) instead of one big one

@ It is still concave in w and thus has no local maxima

@ Assuming the data is drawn from a MRF with parameters w*, can show that
as the number of data points gets large, w”t — w*
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