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Approximate marginal inference

e Given the joint p(xi,...,x,) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x; | €)?

@® We showed in Lecture 4 that doing this exactly is NP-hard

o Nearly all approximate inference algorithms are either:

@ Monte-carlo methods (e.g., Gibbs sampling, likelihood reweighting,

MCMCQ)
@ Variational algorithms (e.g., mean-field, loopy belief propagation)
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Variational methods

e Goal: Approximate difficult distribution p(x | €) with a new
distribution g(x) such that:

© p(x|e) and g(x) are “close”
@ Computation on g(x) is easy

@ How should we measure distance between distributions?

@ The Kullback-Leibler divergence (KL-divergence) between two
distributions p and g is defined as

D(pllq) = Zp |0g

(measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p)

e D(p|lq) >0 for all p,q, with equality if and only if p =g

@ Notice that KL-divergence is asymmetric
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KL—divergence (see Section 2.8.2 of Murphy)

D(pllq) = Z p(x) |og

@ Suppose p is the true distribution we wish to do inference with

@ What is the difference between the solution to
argmin D(pl|q)
(called the M-projection of g onto p) and
argmin D(q||p)

(called the I-projection)?

@ These two will differ only when g is minimized over a restricted set of
probability distributions Q = {q1, ...}, and in particular when p & Q
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KL-divergence — M-projection

q" = argmin D(p||q) = XX:P(X) log 58.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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p=Green, g*=Red
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KL-divergence — |-projection

* = argmin = x) lo @
q" = arg min D(q]lp) ijq( log -

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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KL-divergence (single Gaussian)

In this simple example, both the M-projection and I-projection find an
approximate q(x) that has the correct mean (i.e. Ep[z] = Eq4[z]):
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What if p(x) is multi-modal?
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KL-divergence — M-projection (mixture of Gaussians)

p(x)
q(x)
Now suppose that p(x) is mixture of two 2D Gaussians and Q is the set of
all 2D Gaussian distributions (with arbitrary covariance matrices):

*=argmin D = x) lo
q" = arg min D(p]lq) zx:p() g

p=Blue, g*=Red

M-projection yields distribution g(x) with the correct mean and covariance.
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KL-divergence — I-projection (mixture of Gaussians)

q" = arg min D(qllp) = > " a(x)log 283-

&

N N

p=Blue, g*=Red (two local minimal)

Unlike M-projection, the I-projection does not always yield the correct

moments.
Q: D(p||q) is convex — so why are there local minima?

A: using a parametric form for g (i.e., a Gaussian). Not convex in u, ¥.

Lecture 11, Nov. 24, 2015

David Sontag (NYU) Inference and Representation

9/

32



M-projection does moment matching

@ Recall that the M-projection is:

qg* =arg Criréig D(pllq) = Z p(x)log Zg;

X

@ Suppose that Q is an exponential family (p(x) can be arbitrary) and that we
perform the M-projection, finding g*

@ Theorem: The expected sufficient statistics, with respect to g*(x), are
exactly the marginals of p(x):

Eg- [F(0)] = E,[F(x)]

@ Thus, solving for the M-projection (exactly) is just as hard as the original
inference problem

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 24, 2015 10 / 32



M-projection does moment matching

@ Recall that the M-projection is:
g =arg_min D(p|q) = ZP

@ Theorem: Eg.[f(x)] = E,[f(x)].

@ Proof: Look at the first-order optimality conditions.

9y D(pllg) = %Zp ) log q(x
= —&,,Zp log{h(x exp{n - f(x) - 'nZ(n)}}
- Zp ){n-£(x) —1n 2(n)}
3 p)R(X) + Egen ()] (since 8,0 Z(1) = Eqlfi(x)])

= —Ep[fi(x)] + Egnlfi(x)] = 0.

@ Corollary: Even computing the gradients is hard (can’t do gradient descent)
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Most variational inference algorithms make use of the I-projection
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Variational methods

@ Suppose that we have an arbitrary graphical model:

p(x; )— H(bc Xc) exp(ZG xc) —InZ( ))

ceC

@ All of the approaches begin as follows:

= x n@
D(qllp) = Zx:q( )| ()

1
= 72 ) In p(x Zq(x)lnm

X

- {; )(3 belxe) — In 2(6)) — H(a(x))

ceC
= —ZZq(x (xc +Z )InZ(0) — H(q(x))
ceC x
= =Y Eglfc(xc)] +In Z(6) — H(q(x)).
ceC
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Mean field algorithms for variational inference

max 35 qlxe)felxe) + H(alx))

9cQ ceC Xc
@ Although this function is concave and thus in theory should be easy
to optimize, we need some compact way of representing g(x)

@ Mean field algorithms assume a factored representation of the joint
distribution, e.g.

(]

o O
O O O 0O ©°
O O O 0 o
O O O OO
O O O OO

= H qi(x;) (called naive mean field)
iev

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 24, 2015 14 / 32



Naive mean-field

@ Suppose that Q consists of all fully factored distributions, of the form
q(x) = [Ticv qi(x)

@ We can use this to simplify

max Z Z q(xc)0c(xc) + H(q)

9€Q ceC Xc
@ First, note that g(xc) = [[;c. i(xi)

@ Next, notice that the joint entropy decomposes as a sum of local entropies:

H(q) = —Zq(X)lnq(X)
—zq(x 0T at) =~ 3 a0 S naitx)

iev x iev
= - ZZ In CI: XI
iev x
= — Z Z qi(x;) In gi(x;) Z glxv\i | i) = Z H(g;).-
eV X Xy icv
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Naive mean-field

@ Suppose that Q consists of all fully factored distributions, of the form
q(x) = ITiev gi(xi)
@ We can use this to simplify

max Z Z q(xc)fc(xc) + H(q)

€9 el x
@ First, note that g(xc) = [[;c. 9i(xi)
@ Next, notice that the joint entropy decomposes as H(q) = > ..\, H(qi).
@ Putting these together, we obtain the following variational objective:

(%) m‘?x Z Z Oc(xc) H qi(x;) + Z H(a:)

ceC Xc i€c iev
subject to the constraints

q,'(X,') >0 VieV,x e Val(X,)
Y ailx)=1 VieVv

x;€Val(X;)
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Naive mean-field for pairwise MRFs

@ How do we maximize the variational objective?

) max SN 05 x)ai(x)ai0) = > > ailx:) Ingi(x)

fEE Xi,xj i€V x

@ This is a non-concave optimization problem, with many local maximal!
@ Nonetheless, we can greedily maximize it using block coordinate ascent:

@ Iterate over each of the variables i € V. For variable i,
(2] Fully maximize (*) with respect to {gi(x;), Vx; € Val(X;)}.
© Repeat until convergence.

@ Constructing the Lagrangian, taking the derivative, setting to zero, and

solving yields the update: (shown on blackboard)
1
q( )%?exp{ qujxj UXI,XJ)}
! JjeN(i)
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How accurate will the approximation be?

o Consider a distribution which is an XOR of two binary variables A and
B: p(a,b) =05—¢€ifa# band p(a,b) =cifa=>b
@ The contour plot of the variational objective is:

@ Even for a single edge, mean field can give very wrong answers!
@ Interestingly, once € > 0.1, mean field has a single maximum point at
the uniform distribution (thus, exact)
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Structured mean-field approximations

@ Rather than assuming a fully-factored distribution for g, we can use a
structured approximation, such as a spanning tree

@ For example, for a factorial HMM, a good approximation may be a
product of chain-structured models:
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Recall our starting place for variational methods...

@ Suppose that we have an arbitrary graphical model:
p(x;0) = Hqﬁc Xc) exp(ZG xc)—InZ( ))
ceC

@ All of the approaches begin as follows:

D(qlp) = Zq(X)ln@

- p(x)
1
= —Zq(x In p(x Z ()'nm
- —Zq(x D Oe(xe) = In Z(0)) — H(q(x))

ceC
= 722(7)( (xc +Z )InZ(0) — H(q(x))
ceC x
= =) Eqlfc(xc)] + In Z(6) — H(q(x)).
ceC
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The log-partition function

e Since D(q||p) > 0, we have

B Z Eqwc(xc)] +In Z(O) - H(q(x)) >0,

ceC
which implies that
InZ(0) >~ Eqlbc(xc)] + H(q(x)).
ceC

@ Thus, any approximating distribution g(x) gives a lower bound on the
log-partition function (for a BN, this is the log probability of the
observed variables)

o Recall that D(q||p) = 0 if and only if p = q.Thus, if we allow
ourselves to optimize over all distributions, we have:

InZ(6) = max > Eqlfe(xc)] + H(q(x)).

ceC
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Re-writing objective in terms of moments

InZ(0) = max 25[9 (xc)] + H(q(x))

ceC

= max ZZ c(%e) + H(q(x))
ceC x

= max ZZCI(XCH (xc) + H(q(x))-
ceC Xxc

@ Now assume that p(x) is in the exponential family, and let f(x) be its
sufficient statistic vector

@ Define pg = E4[f(x)] to be the marginals of g(x)

@ We can re-write the objective as

In Z(6) = max max ZZQ xe)pe(xe) + H(q(x)),

EM g:E,[f(x
HEM g:Eq[f( el =

where M, the marginal polytope, consists of all valid marginal vectors
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Re-writing objective in terms of moments

@ Next, push the max over g instead to obtain:

Inz(0) = TeaﬁZZHC(xc)uc(xc) + H(p), where

ceC xc
H(p) = max  H(q) + Does this look familiar?
:Eq[f(x)]=n

@ For discrete random variables, the marginal polytope M is given by
M = {/J ERY | u= Z p(x)f(x) for some p(x) > 0, Z p(x) = 1}
xexXm xexm

= conv{f(x), X € X'"} (conv denotes the convex hull operation)

@ For a discrete-variable MRF, the sufficient statistic vector f(x) is simply the
concatenation of indicator functions for each clique of variables that appear
together in a potential function

@ For example, if we have a pairwise MRF on binary variables with m = |V/|
variables and |E| edges, d = 2m + 4|E]|
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Marginal polytope for discrete MRFs

<— Assignment for X,

. |
® Marginal polytope 0
(I) (Wainwright & Jordan, '03) ? <— Assignment for X,
. I / | | «— Assignment for X,
"=]o 0
0 (I) <— Edge assignment for
0 —
| H=10 X%y
0 (0]
0 1 0 | «— Edge assignment for
o TTT I
0 A 0 72
I valid marginal probabilities 0
0 0 | «— Edge assignment for
0 X, =1 (IJ XXy
|
o] i o] x,=0
XZ =] X3 =0
XZ =] X3= 0
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Relaxation

InZ(6 —maxZZ@ Xe)te(xe) + H(u)

ceC Xc

@ We still haven't achieved anything, because:

@ The marginal polytope M is complex to describe (in general,
exponentially many vertices and facets)
@ H(p) is very difficult to compute or optimize over

@ We now make two approximations:

@ We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints M, B
@ We replace H(u) with a function H(u) which approximates H(u)
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Local consistency constraints

@ Force every “cluster” of variables to choose a local assignment:
,u,-(x,-) > 0 VieV,x
Z/J,,’(X,‘) = 1 VieV
Xi
wii(xi,x)) > 0 Vij € E, x,x;
D uilax) = 1 VieE
Xiy Xj

@ Enforce that these local assignments are globally consistent:

uiba) = D milxig) Vij € E.xi
%
ni(x) = ZUU(XhXj) Vij € E, x;

@ The local consistency polytope, M, is defined by these constraints

@ Theorem: The local consistency constraints exactly define the marginal
polytope for a tree-structured MRF
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Entropy for tree-structured models

@ Suppose that p is a tree-structured distribution, so that we are
optimizing only over marginals 1(x;, x;) for ij € T

@ The solution to.arg MaXg. £, [f(x)]=u H(q) is a tree-structured MRF (c.f.
lecture 10, maximum entropy estimation)

@ The entropy of g as a function of its marginals can be shown to be
= > H(ui) = > 1(uy)
icv ijeT

where
H(pi) = —Zuf (xi) log pi(xi)

:U’U(XI’X_I)
I(pi) = 11 (X, Xj) log —— >
Y 2_ i 11 (X1 )i ()

Xj,Xj

@ Can we use this for non-tree structured models?
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Bethe-free energy approximation

@ The Bethe entropy approximation is (for any graph)

Hethe (1) = Y H(pi) = > 1(1ij)

eV jeE

@ This gives the following variational approximation:

max Z Z Qc(xc)ﬂc(xc) + Hbethe(ﬁ)

eM,
HEML e " xe

@ For non tree-structured models this is not concave, and is hard to
maximize
@ Loopy belief propagation, if it converges, finds a saddle point!
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Concave relaxation

o Let H(y) be an upper bound on H(y), i.e. H(p) < A(p)

@ As a result, we obtain the following upper bound on the log-partition

function: ;
InZ(6) < max 3= 3 Oelxc)elxc) + ()

t ceC Xc

@ An example of a concave entropy upper bound is the tree-reweighted
approximation (Jaakkola, Wainwright, & Wilsky, '05), given by specifying a
distribution over spanning trees of the graph

f ! f !
b b b b
e e e e

Letting {p;j} denote edge appearance probabilities, we have:

Hrrw (i) =Y H(wi) = Y pil (1)

iev iicE
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Comparison of LBP and TRW

We showed two approximation methods, both making use of the local consistency
constraints M; on the marginal polytope:

© Bethe-free energy approximation (for pairwise MRFs):

max N pi(xi, x)05(xi, ) + Y H(p) = > (i)

eMm,
HET JEE Xi,X; iev jEE

e Not concave. Can use concave-convex procedure to find local optima
o Loopy BP, if it converges, finds a saddle point (often a local maxima)

@ Tree re-weighted approximation (for pairwise MRFs):

max ZZ’U’-’ X”XJ)H,J Xis Xj +ZH MI Zpul(lu’u)

eM
HEML JEE Xi,X; iev ijEE

o {pjj} are edge appearance probabilities (must be consistent with some
set of spanning trees)

e This is concave! Find global maximiza using projected gradient ascent

e Provides an upper bound on log-partition function, i.e. In Z(0) < (x)
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Two types of variational algorithms: Mean-field and

relaxation

max ZZ xc)Bc(xc) + H(q(x)).

ceC Xc

@ Although this function is concave and thus in theory should be easy to
optimize, we need some compact way of representing g(x)

@ Relaxation algorithms work directly with pseudomarginals which may not be
consistent with any joint distribution

@ Mean-field algorithms assume a factored representation of the joint
distribution, e.g.

o
O O 0O o0 o
O O O O O
O O 0O O ©o
O O O O O

(x) = H qi(xi) (called naive mean field)
iev
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Naive mean-field

@ Using the same notation as in the rest of the lecture, naive mean-field is:

max Oc(xc)ppe(xc) + H(ui)  subject to
PIPIL >

ceC X iev
wi(x;) > 0 VieV,x € Val(X;)
Z wilx;) = 1 VieV
X EVal(X;)
pe(xe) = HNI’(XI)
i€c

@ Corresponds to optimizing over an inner bound on the marginal polytope:
SN,
/O—"AN s

g‘b’

M(G)

@ We obtain a lower bound on the partition function, i.e. (x) <In Z(0)
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