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Approximate marginal inference

Given the joint p(x1, . . . , xn) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x1 | e)?

We showed in Lecture 4 that doing this exactly is NP-hard

Nearly all approximate inference algorithms are either:
1 Monte-carlo methods (e.g., Gibbs sampling, likelihood reweighting,

MCMC)
2 Variational algorithms (e.g., mean-field, loopy belief propagation)
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Variational methods

Goal: Approximate difficult distribution p(x | e) with a new
distribution q(x) such that:

1 p(x | e) and q(x) are “close”
2 Computation on q(x) is easy

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

(measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p)

D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q

Notice that KL-divergence is asymmetric
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KL-divergence (see Section 2.8.2 of Murphy)

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Suppose p is the true distribution we wish to do inference with

What is the difference between the solution to

arg min
q

D(p‖q)

(called the M-projection of q onto p) and

arg min
q

D(q‖p)

(called the I-projection)?

These two will differ only when q is minimized over a restricted set of
probability distributions Q = {q1, . . .}, and in particular when p 6∈ Q
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KL-divergence – M-projection

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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p=Green, q∗=Red
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KL-divergence – I-projection

q∗ = arg min
q∈Q

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)
.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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David Sontag (NYU) Inference and Representation Lecture 11, Nov. 24, 2015 6 / 32



KL-divergence (single Gaussian)

In this simple example, both the M-projection and I-projection find an
approximate q(x) that has the correct mean (i.e. Ep[z] = Eq[z]):

z1

z2

(b)
0 0.5 1
0

0.5

1

z1

z2

(a)
0 0.5 1
0

0.5

1

What if p(x) is multi-modal?
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KL-divergence – M-projection (mixture of Gaussians)

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Now suppose that p(x) is mixture of two 2D Gaussians and Q is the set of
all 2D Gaussian distributions (with arbitrary covariance matrices):

p=Blue, q∗=Red

M-projection yields distribution q(x) with the correct mean and covariance.
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KL-divergence – I-projection (mixture of Gaussians)

q∗ = arg min
q∈Q

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)
.

p=Blue, q∗=Red (two local minima!)

Unlike M-projection, the I-projection does not always yield the correct
moments.
Q: D(p‖q) is convex – so why are there local minima?
A: using a parametric form for q (i.e., a Gaussian). Not convex in µ,Σ.
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M-projection does moment matching

Recall that the M-projection is:

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Suppose that Q is an exponential family (p(x) can be arbitrary) and that we
perform the M-projection, finding q∗

Theorem: The expected sufficient statistics, with respect to q∗(x), are
exactly the marginals of p(x):

Eq∗ [f(x)] = Ep[f(x)]

Thus, solving for the M-projection (exactly) is just as hard as the original
inference problem
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M-projection does moment matching

Recall that the M-projection is:
q∗ = arg min

q(x;η)∈Q
D(p‖q) =

∑

x

p(x) log
p(x)

q(x)
.

Theorem: Eq∗ [f(x)] = Ep[f(x)].

Proof: Look at the first-order optimality conditions.

∂ηiD(p‖q) = −∂ηi
∑

x

p(x) log q(x)

= −∂ηi
∑

x

p(x) log
{
h(x) exp{η · f(x)− lnZ (η)}

}

= −∂ηi
∑

x

p(x)
{
η · f(x)− lnZ (η)

}

= −
∑

x

p(x)fi (x) + Eq(x;η)[fi (x)] (since ∂ηilnZ (η) = Eq[fi (x)])

= −Ep[fi (x)] + Eq(x;η)[fi (x)] = 0.

Corollary: Even computing the gradients is hard (can’t do gradient descent)
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Most variational inference algorithms make use of the I-projection
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Variational methods

Suppose that we have an arbitrary graphical model:

p(x; θ) =
1

Z (θ)

∏

c∈C
φc(xc) = exp

(∑

c∈C
θc(xc)− lnZ (θ)

)

All of the approaches begin as follows:

D(q‖p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)
(∑

c∈C
θc(xc)− lnZ (θ)

)
− H(q(x))

= −
∑

c∈C

∑

x

q(x)θc(xc) +
∑

x

q(x) lnZ (θ)− H(q(x))

= −
∑

c∈C
Eq[θc(xc)] + lnZ (θ)− H(q(x)).

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 24, 2015 13 / 32



Mean field algorithms for variational inference

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q(x)).

Although this function is concave and thus in theory should be easy
to optimize, we need some compact way of representing q(x)

Mean field algorithms assume a factored representation of the joint
distribution, e.g.

17

Mean Field ApproximationMean Field Approximation

33© Eric Xing @ CMU, 2005-2013

Naïve Mean Field

z Fully factorized variational distribution

34© Eric Xing @ CMU, 2005-2013q(x) =
∏

i∈V
qi (xi ) (called naive mean field)
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Naive mean-field

Suppose that Q consists of all fully factored distributions, of the form
q(x) =

∏
i∈V qi (xi )

We can use this to simplify

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q)

First, note that q(xc) =
∏

i∈c qi (xi )

Next, notice that the joint entropy decomposes as a sum of local entropies:

H(q) = −
∑

x

q(x) ln q(x)

= −
∑

x

q(x) ln
∏

i∈V
qi (xi ) = −

∑

x

q(x)
∑

i∈V
ln qi (xi )

= −
∑

i∈V

∑

x

q(x) ln qi (xi )

= −
∑

i∈V

∑

xi

qi (xi ) ln qi (xi )
∑

xV\i

q(xV\i | xi ) =
∑

i∈V
H(qi ).
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Naive mean-field

Suppose that Q consists of all fully factored distributions, of the form
q(x) =

∏
i∈V qi (xi )

We can use this to simplify

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q)

First, note that q(xc) =
∏

i∈c qi (xi )

Next, notice that the joint entropy decomposes as H(q) =
∑

i∈V H(qi ).

Putting these together, we obtain the following variational objective:

(∗) max
q

∑

c∈C

∑

xc

θc(xc)
∏

i∈c
qi (xi ) +

∑

i∈V
H(qi )

subject to the constraints

qi (xi ) ≥ 0 ∀i ∈ V , xi ∈ Val(Xi )
∑

xi∈Val(Xi )

qi (xi ) = 1 ∀i ∈ V
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Naive mean-field for pairwise MRFs

How do we maximize the variational objective?

(∗) max
q

∑

ij∈E

∑

xi ,xj

θij(xi , xj)qi (xi )qj(xj)−
∑

i∈V

∑

xi

qi (xi ) ln qi (xi )

This is a non-concave optimization problem, with many local maxima!

Nonetheless, we can greedily maximize it using block coordinate ascent:

1 Iterate over each of the variables i ∈ V . For variable i ,
2 Fully maximize (*) with respect to {qi (xi ),∀xi ∈ Val(Xi )}.
3 Repeat until convergence.

Constructing the Lagrangian, taking the derivative, setting to zero, and
solving yields the update: (shown on blackboard)

qi (xi )←
1

Zi
exp

{
θi (xi ) +

∑

j∈N(i)

∑

xj

qj(xj)θij(xi , xj)
}
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How accurate will the approximation be?

Consider a distribution which is an XOR of two binary variables A and
B: p(a, b) = 0.5− ε if a 6= b and p(a, b) = ε if a = b

The contour plot of the variational objective is:

0
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Q(a1)

Q
(b

1 )

Even for a single edge, mean field can give very wrong answers!

Interestingly, once ε > 0.1, mean field has a single maximum point at
the uniform distribution (thus, exact)
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Structured mean-field approximations

Rather than assuming a fully-factored distribution for q, we can use a
structured approximation, such as a spanning tree

For example, for a factorial HMM, a good approximation may be a
product of chain-structured models:146 Mean Field Methods

Fig. 5.4 Structured mean field approximation for a factorial HMM. (a) Original model
consists of a set of hidden Markov models (defined on chains), coupled at each time by
a common observation. (b) An equivalent model, where the ellipses represent interactions
among all nodes at a fixed time, induced by the common observation. (c) Approximating
distribution formed by a product of chain-structured models. Here µα and µδ are the sets
of mean parameters associated with the indicated vertex and edge, respectively.

on some subset of M nodes that are coupled at a given time slice (e.g.,

see ellipse in panel (c)). Note that this subset of nodes is independent

with respect to the approximating distribution. Therefore, the function

gβ(µ(F )) will decouple into a product of terms of the form fi({µi(F )}),

where each fi is some function of the mean parameters {µi} ≡ {µi(F )}
associated with node i = 1, . . . ,M in the relevant cluster. For instance, if

the factorial HMM involved binary variables and M = 3 and β = (stu),

then gstu(µ) = µsµtµu.

The decoupled nature of the approximation yields valuable savings

on the computational side. In particular, the junction tree updates nec-

essary to maintain consistency of the approximation can be performed

by applying the forward–backward algorithm (i.e., the sum-product

updates as an exact method) to each chain separately. This decoupling

also has important consequences for the structure of any mean field

fixed point. In particular, it can be seen that no term gβ(µ(F )) will
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Recall our starting place for variational methods...

Suppose that we have an arbitrary graphical model:

p(x; θ) =
1

Z (θ)

∏

c∈C
φc(xc) = exp

(∑

c∈C
θc(xc)− lnZ (θ)

)

All of the approaches begin as follows:

D(q‖p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)
(∑

c∈C
θc(xc)− lnZ (θ)

)
− H(q(x))

= −
∑

c∈C

∑

x

q(x)θc(xc) +
∑

x

q(x) lnZ (θ)− H(q(x))

= −
∑

c∈C
Eq[θc(xc)] + lnZ (θ)− H(q(x)).
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The log-partition function

Since D(q‖p) ≥ 0, we have

−
∑

c∈C
Eq[θc(xc)] + lnZ (θ)− H(q(x)) ≥ 0,

which implies that

lnZ (θ) ≥
∑

c∈C
Eq[θc(xc)] + H(q(x)).

Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function (for a BN, this is the log probability of the
observed variables)

Recall that D(q‖p) = 0 if and only if p = q.Thus, if we allow
ourselves to optimize over all distributions, we have:

lnZ (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x)).
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Re-writing objective in terms of moments

lnZ (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x))

= max
q

∑

c∈C

∑

x

q(x)θc(xc) + H(q(x))

= max
q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q(x)).

Now assume that p(x) is in the exponential family, and let f(x) be its
sufficient statistic vector

Define µq = Eq[f(x)] to be the marginals of q(x)

We can re-write the objective as

lnZ (θ) = max
µ∈M

max
q:Eq [f(x)]=µ

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(q(x)),

where M, the marginal polytope, consists of all valid marginal vectors
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Re-writing objective in terms of moments

Next, push the max over q instead to obtain:

lnZ (θ) = max
µ∈M

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(µ), where

H(µ) = max
q:Eq [f(x)]=µ

H(q) ← Does this look familiar?

For discrete random variables, the marginal polytope M is given by

M =
{
µ ∈ Rd | µ =

∑

x∈Xm

p(x)f(x) for some p(x) ≥ 0,
∑

x∈Xm

p(x) = 1
}

= conv
{

f(x), x ∈ Xm
}

(conv denotes the convex hull operation)

For a discrete-variable MRF, the sufficient statistic vector f(x) is simply the
concatenation of indicator functions for each clique of variables that appear
together in a potential function

For example, if we have a pairwise MRF on binary variables with m = |V |
variables and |E | edges, d = 2m + 4|E |
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Marginal polytope for discrete MRFs

Marginal polytope!
1!
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valid marginal probabilities!

(Wainwright & Jordan, ’03)!
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X1X3!

Edge assignment for"
X1X2!

Edge assignment for"
X2X3!

Assignment for X1 "

Assignment for X2 "

Assignment for X3!

Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
�

µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]
�

(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V | + k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x� = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x�) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17
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Relaxation

lnZ (θ) = max
µ∈M

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(µ)

We still haven’t achieved anything, because:

1 The marginal polytope M is complex to describe (in general,
exponentially many vertices and facets)

2 H(µ) is very difficult to compute or optimize over

We now make two approximations:

1 We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints ML

2 We replace H(µ) with a function H̃(µ) which approximates H(µ)
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Local consistency constraints

Force every “cluster” of variables to choose a local assignment:

µi (xi ) ≥ 0 ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ≥ 0 ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these local assignments are globally consistent:

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

The local consistency polytope, ML is defined by these constraints

Theorem: The local consistency constraints exactly define the marginal
polytope for a tree-structured MRF

David Sontag (NYU) Inference and Representation Lecture 11, Nov. 24, 2015 26 / 32



Entropy for tree-structured models

Suppose that p is a tree-structured distribution, so that we are
optimizing only over marginals µij(xi , xj) for ij ∈ T

The solution to arg maxq:Eq [f(x)]=µH(q) is a tree-structured MRF (c.f.
lecture 10, maximum entropy estimation)

The entropy of q as a function of its marginals can be shown to be

H(~µ) =
∑

i∈V
H(µi )−

∑

ij∈T
I (µij)

where

H(µi ) = −
∑

xi

µi (xi ) logµi (xi )

I (µij) =
∑

xi ,xj

µij(xi , xj) log
µij(xi , xj)

µi (xi )µj(xj)

Can we use this for non-tree structured models?
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Bethe-free energy approximation

The Bethe entropy approximation is (for any graph)

Hbethe(~µ) =
∑

i∈V
H(µi )−

∑

ij∈E
I (µij)

This gives the following variational approximation:

max
µ∈ML

∑

c∈C

∑

xc

θc(xc)µc(xc) + Hbethe(~µ)

For non tree-structured models this is not concave, and is hard to
maximize

Loopy belief propagation, if it converges, finds a saddle point!
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Concave relaxation

Let H̃(µ) be an upper bound on H(µ), i.e. H(µ) ≤ H̃(µ)

As a result, we obtain the following upper bound on the log-partition
function:

lnZ (θ) ≤ max
µ∈ML

∑

c∈C

∑

xc

θc(xc)µc(xc) + H̃(µ)

An example of a concave entropy upper bound is the tree-reweighted
approximation (Jaakkola, Wainwright, & Wilsky, ’05), given by specifying a
distribution over spanning trees of the graph

b

e

f

b

e

f

b

e

f

b

e

f

(a) (b) (c) (d)

Figure 1. Illustration of the spanning tree poly-
tope T(G). Original graph is shown in panel (a).
Probability 1/3 is assigned to each of the three
spanning trees { Ti | i = 1, 2, 3 } shown in panels
(b)–(d). Edge b is a so-called bridge in G, mean-
ing that it must appear in any spanning tree (i.e.,
µb = 1). Edges e and f appear in two and one of the
spanning trees respectively, which gives rise to edge
appearance probabilities µe = 2/3 and µf = 1/3.

Tree-consistent pseudomarginals: The con-
straint set associated with our variational formula-
tion [10] is the set of so-called pseudomarginals that
satisfy certain tree-consistency constraints. To be pre-
cise, for each node s ∈ V , let Ts = {Ts;j | j ∈ Xs} be
a non-negative pseudomarginal vector with ms = |Xs|
elements; similarly, for each edge (s, t) ∈ E, let
Tst = {Tst;jk | (j, k) ∈ Xs × Xt} be a non-negative
pseudomarginal vector with ms × mt elements. On
occasion, we will also use the notation Ts(xs) to refer
to the function that takes the value Ts;j when xs = j;
the joint function Tst(xs, xt) is defined similarly. We
let T = {Ts, s ∈ V } ∪ { Tst, (s, t) ∈ E } denote the
full collection of pseudomarginals on nodes and edges.
This set of pseudomarginals is required to satisfy
a set of local normalization and marginalization
constraints; in particular, we require that they are
elements of the set

TREE(G) !
{

T
∣∣ ∑

k∈Xt

Tst;jk = Ts;j ,
∑

j∈Xs

Ts;j = 1
}

Our choice of notation is motivated by the fact that if
G is a tree, then TREE(G) is a complete description
of the set of valid (single node and edge) marginal
distributions.

Variational formulation We now present the vari-
ational problem that gives rise to upper bounds on the
log partition function. We begin by setting up the nec-
essary notation. For each s ∈ V and pseudomarginal
Ts, we define the single node entropy:

Hs(Ts) = −
∑

j∈Xs

Ts;j log Ts;j

Similarly, for each (s, t) ∈ E, we define the mutual
information between xs and xt as measured under the

joint pseudomarginal Tst:

Ist(Tst) =
∑

(j,k)

Tst;jk log
Tst;jk

(
∑

k∈Xt

Tst;jk)(
∑

j∈Xs

Tst;jk)

Borrowing terminology from statistical physics [11], we
define an “average energy” term as follows:

T · θ∗ =
∑

s∈V

∑

j

Ts;jθ
∗
s;j +

∑

(s,t)∈E

∑

(j,k)

Tst;jkθ∗
st;jk

Using this notation, our bounds are based on the fol-
lowing function:

F(T;µe; θ∗) ! −
∑

s∈V

Hs(Ts) +
∑

(s,t)∈E

µstIst(Tst) − T · θ∗

It can be seen that this function is closely related to
the Bethe free energy [11]. In fact, suppose that we
set µst = 1 for all edges (s, t) ∈ E, meaning that every
edge appears with probability one. In this case, the
function F(T;µe; θ∗) is equivalent to the Bethe free
energy on the constraint set TREE(G). However, the
choice µe = 1 belongs to the spanning tree polytope
T(G) only when the graph G is actually a tree.

In the paper [10], we prove the following result:

Theorem 1. For all µe ∈ T(G), the function
F(T ;µe; θ∗) is a convex in terms of T. Moreover, the
log partition function is bounded above by the solution
of the following variational problem:

Φ(θ∗) ≤ − min
T∈TREE(G)

F(T;µe; θ∗) (4)

The optimal solution T̂ = T̂(θ∗) to this minimization
is unique.

3.2 Tree-reweighted belief propagation

We now present a tree-reweighted belief propagation
algorithm designed to find the requisite set T̂ of pseu-
domarginals via a sequence of message-passing oper-
ations. This algorithm is the sum-product version of
the tree-reweighted max-product updates analyzed in
our related work [9].

The optimal collection T̂ of pseudomarginals, as a so-
lution to the constrained optimization problem (4),
must belong to TREE(G). In addition, it can be
shown [10] that they are characterized by the following
admissibility condition:

θ∗ · φ(x) + C =

∑

s∈V

log T̂ (xs) +
∑

(s,t)∈E

µst log
T̂st(xs, xt)

T̂s(xs)T̂t(xt)
(5)

Letting {ρij} denote edge appearance probabilities, we have:

HTRW (~µ) =
∑

i∈V
H(µi )−

∑

ij∈E
ρij I (µij)
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Comparison of LBP and TRW

We showed two approximation methods, both making use of the local consistency
constraints ML on the marginal polytope:

1 Bethe-free energy approximation (for pairwise MRFs):

max
µ∈ML

∑

ij∈E

∑

xi ,xj

µij(xi , xj)θij(xi , xj) +
∑

i∈V
H(µi )−

∑

ij∈E
I (µij)

Not concave. Can use concave-convex procedure to find local optima
Loopy BP, if it converges, finds a saddle point (often a local maxima)

2 Tree re-weighted approximation (for pairwise MRFs):

(∗) max
µ∈ML

∑

ij∈E

∑

xi ,xj

µij(xi , xj)θij(xi , xj) +
∑

i∈V
H(µi )−

∑

ij∈E
ρij I (µij)

{ρij} are edge appearance probabilities (must be consistent with some
set of spanning trees)
This is concave! Find global maximiza using projected gradient ascent
Provides an upper bound on log-partition function, i.e. lnZ (θ) ≤ (∗)
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Two types of variational algorithms: Mean-field and
relaxation

max
q∈Q

∑

c∈C

∑

xc

q(xc)θc(xc) + H(q(x)).

Although this function is concave and thus in theory should be easy to
optimize, we need some compact way of representing q(x)

Relaxation algorithms work directly with pseudomarginals which may not be
consistent with any joint distribution

Mean-field algorithms assume a factored representation of the joint
distribution, e.g.

17

Mean Field ApproximationMean Field Approximation

33© Eric Xing @ CMU, 2005-2013

Naïve Mean Field

z Fully factorized variational distribution

34© Eric Xing @ CMU, 2005-2013

q(x) =
∏

i∈V
qi (xi ) (called naive mean field)
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Naive mean-field

Using the same notation as in the rest of the lecture, naive mean-field is:

(∗) max
µ

∑

c∈C

∑

xc

θc(xc)µc(xc) +
∑

i∈V
H(µi ) subject to

µi (xi ) ≥ 0 ∀i ∈ V , xi ∈ Val(Xi )∑

xi∈Val(Xi )

µi (xi ) = 1 ∀i ∈ V

µc(xc) =
∏

i∈c
µi (xi )

Corresponds to optimizing over an inner bound on the marginal polytope:5.4 Nonconvexity of Mean Field 141

Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for

some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this

polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset

of M(G) — must be a nonconvex set. To establish this claim, we first

observe that MF (G) contains all of the extreme points µx = φ(x) of

the polytope M(G). Indeed, the extreme point µx is realized by the

distribution that places all its mass on x, and such a distribution is

Markov with respect to any graph. Therefore, if MF (G) were a con-

vex set, then it would have to contain any convex combination of such

extreme points. But from the representation (5.24), taking convex com-

binations of all such extreme points generates the full polytope M(G).

Therefore, whenever MF (G) is a proper subset of M(G), it cannot be

a convex set.

Consequently, nonconvexity is an intrinsic property of mean field

approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

We obtain a lower bound on the partition function, i.e. (∗) ≤ lnZ (θ)
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