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Overview of Lecture

1 Review mathematical concepts: Jensen’s Inequality and
the Maximum Likelihood (ML) principle

2 Learning as Optimization : Maximizing the Evidence
Lower Bound (ELBO)

3 Learning in LDA

4 Stochastic Variational Inference

5 Learning Deep Generative Models

6 Summarize
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Recap

Jensen’s Inequality: For concave f , we have

f(E [X]) ≥ E [f(X)]

f(E [X]) � E [f(X)]

f((1� �)a + �b)| {z }
f(E(X)) where P [X=a]=1��,P [X=b]=�

(1� �)f(a) + �f(b)| {z }
E[f(X)] where P [X=a]=1��,P [X=b]=�

a b

f

Figure: Jensen’s Inequality
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Recap

We assume that for D = {x1, . . . , xN}, xi ∼ p(x) i.i.d

We hypothesize a model (with parameters θ) for how the
data is generated

The Maximum Likelihood Principle:
maxθ p(D; θ) =

∏N
i=1 p(xi; θ)

Typically work with the log probability: i.e
maxθ

∑N
i=1 log p(xi; θ)
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A simple Bayesian Network

x

z

Lets start with a very simple generative model for our data

We assume that the data is generated i.i.d as:

z ∼ p(z) x ∼ p(x|z)

z is latent/hidden and x is observed
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Bounding the Marginal Likelihood

Log-Likelihood of a single datapoint x ∈ D under the
model: log p(x; θ)

Important: Assume ∃q(z;φ), (variational approximation)

log p(x) = log

∫

z
p(x, z) (Multiply and divide by q(z))

= log

∫

z

q(z)p(x, z)

q(z)
= logEz∼q(z)

[
p(x, z)

q(z)

]
(By Jensen’s Inequality)

≥
∫

z
q(z) log

p(x, z)

q(z)
= L(x; θ, φ)

= Eq(z)[log p(x, z)]
︸ ︷︷ ︸

Expectation of Joint distribution

+ H(q(z))︸ ︷︷ ︸
Entropy
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Evidence Lower BOund (ELBO)/Variational Bound

When is the lower bound tight?

Look at: function - lower bound

log p(x; θ)− L(x; θ, φ)

log p(x)−
∫

z
q(z) log

p(x, z)

q(z)

=

∫

z
q(z) log p(x)−

∫

z
q(z) log

p(x, z)

q(z)

=

∫

z
q(z) log

q(z)p(x)

p(x, z)

= KL(q(z;φ)||p(z|x))
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Evidence Lower BOund (ELBO)/Variational Bound

We assumed the existance of q(z;φ)

What we just showed is that:

Key Point

The optimal q(z;φ) corresponds to the one that realizes
KL(q(z;φ)||p(z|x)) = 0 ⇐⇒ q(z;φ) = p(z|x)
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Evidence Lower BOund (ELBO)/Variational Bound

In order to estimate the liklihood of the entire dataset D,
we need

∑N
i=1 log p(xi; θ)

Summing up over datapoints we get:

max
θ

N∑

i=1

log p(xi; θ) ≥ max
θ,φ1,...,φN

N∑

i=1

L(xi; θ, φi)

︸ ︷︷ ︸
ELBO

Note that we use a different φi for every data point
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Learning as Optimization

Variational learning turns learning into an optimization
problem, namely:

max
θ,φ1,...,φN

N∑

i=1

L(xi; θ, φi)
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Optimal q

The optimal q(z;φ) used in the bound corresponds to the
intractable posterior distribution p(z|x)
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Approximating the Posterior

The better q(z;φ) can approximate the posterior, the smaller
KL(q(z;φ)||p(z|x)) we can achieve, the closer ELBO will be to
log p(x; θ)
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Generative Model

Latent Dirichlet Allocation (LDA)

θ z w

α βη

M
N

K

Figure: Generative Model for Latent Dirichlet Allocation
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Generative Model

1 Sample global topics βk ∼ Dir(ηk)

2 For document d = 1, . . . , N

3 Sample θd ∼ Dir(α)

4 For each word m = 1, . . . ,M

5 Sample topic zdm ∼ Mult(θd)

6 Sample word wdm ∼ Mult(βzdm)

S denotes the simplex

V is the vocabulary and K is the number of topics

θd ∈ SK

βzdm ∈ SV
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Variational Distribution

w are observed and z, β, θ are latent

We will perform inference over z, β, θ

As before, we will assume that there exists a distribution
over our latent variables

We will assume that our distribution factorizes (mean-field
assumption)

Variational Distribution:

q(θ, z, β; Φ) = q(θ; γ)

(
N∏

n=1

q(zn;φn)

)(
K∏

k=1

q(βk;λk)

)

Denote Φ = {γ, φ, λ}, the parameters of the variational
approximation
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Homework

Your next homework assignment involves implementing a
mean-field algorithm for inference in LDA

Assume Topic-Word Probabilities β1:K observed and fixed,
you won’t have to infer these

Perform inference over θ and z

The following slides are to give you intuition and
understanding on how to derive the updates for inference

Read Blei et al. (2003) (particularly the appendix) for
details on derivation

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Latent Dirichlet Allocation
Learning LDA
Stochastic Variational Inference

Outline

1 Introduction
Variational Bound
Summary

2 Variational Inference
Latent Dirichlet Allocation
Learning LDA
Stochastic Variational Inference

3 Deep Generative Models
Bayesian Networks & Deep-Learning
Learning
Summary of DGMs

4 Summary

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Latent Dirichlet Allocation
Learning LDA
Stochastic Variational Inference

ELBO Derivation

For a single document, the joint distribution is:

log p(θ, z, w, β;α, η)

= log

(
K∏

k=1

p(βk; η)

D∏

d=1

[
p(θd;α)

N∏

n=1

p(zdn|θd)p(wn|zdn, β)

])
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ELBO Derivation

Denote Φ = {γ, φ, λ}, the parameters of the variational
approximation

For a single document, the bound on the log likelihood is:

log p(w;α, η) ≥ Eq(θ,z,β;Φ) [log p(θ, z, w, β;α, η)] +H(q(θ, z, β; Φ))
︸ ︷︷ ︸

L(w;α,η,Φ)
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ELBO Derivation

Assumption: The posterior distribution fully factorizes

θ z

φγ λ

β

M
N K

Figure: Plate model for Mean Field Approximation to LDA
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ELBO Derivation

What q(θ, z, β; Φ) do we use?

Mean-field assumption:

q(θ, z, β; Φ) = q(θ; γ)
(∏N

n=1 q(zn;φn)
)(∏K

k=1 q(βk;λk)
)

θ is a multinomial therefore γ is a Dirichlet parameter,
likewise for βk

Each zn ∈ {1, . . . ,K}, therefore φn represents the
parameters of a Multinomial distribution
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Variational EM

L(w;α, η,Φ) = Eq(θ,z,β;Φ) [log p(θ, z, w, β;α, η)] +H(q(θ, z, β; Φ))

L is a function of α, η, the parameters of the model and
Φ = {γ, φ, λ}, the parameters of approximation to the
posterior

Variational EM

Fix α, η. Approximate γ∗, φ∗, λ∗ (mean-field inference)

Fix γ∗, φ∗, λ∗, Update α, η

Unlike EM, variational EM not guaranteed to reach a local
maximizer of L
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Variational EM

Deriving updates for Variational Inference in HW

1 See Appendix in Blei et al. (2003)

2 Expand the bound L using the factorization of the joint
distribution and the form of the mean-field posterior

3 Isolate terms in L corresponding to variational parameters
γ, φ.

4 Find γ∗, φ∗ that maximize L(γ),L(φ)
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Variational Inference

Let us focus just on variational inference (E-step) for the
moment.

φkdn: probability that word n in document d has topic k

γd: posterior Dirichlet parameter for document d

λk: posterior Dirichlet parameter for topic k

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Latent Dirichlet Allocation
Learning LDA
Stochastic Variational Inference

Variational Inference

Lets recall what the variational distribution looked like

θ z

φγ λ

β

M
N K

Figure: Plate model for Mean Field Approximation to LDA
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Variational Inference

1 For a single document d

2 Repeat till convergence:

3 Update φkdn for n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}
4 Update γd

This process yields the local posterior parameters

φkdn gives us the probability that the nth work was drawn
from topic k

γd gives us a Dirichlet parameter. Samples from this
distribution give us an estimate of the topic proportions in
the document
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Variational Inference

We just saw the updates to the local variational parameters
(local to every document)

What about the update to λ, the global variational
parameter (shared across all documents)
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Variational Inference

The posterior over β uses local posterior parameters from every document

1 For all documents d = 1, . . . ,M , repeat:

2 Update φkdn for n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}
3 Update γd
4 Update λk ← η︸︷︷︸

Prior over βk

+
∑D

d=1

∑N
n=1 φ

k
dnwdn for

k = {1, . . . ,K}
5 The update to λk uses φ from every document in

the corpus
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Inefficiencies in the Algorithm

As M (the number of documents) increases, inference
becomes increasingly inefficient

Step 4 requires you to process the entire dataset before
updating λk

Can we do better?
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Stochastic Variational Inference

Key Point

Instead of waiting to process the entire corpus before updating
λ, why don’t we replicate the update from a single document M
times.
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SVI Pseudocode

1 for t = 1, . . . , T

2 Sample a document d from the dataset

3 Repeat till convergence:

4 Update φkdn for n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}
5 Update γd

6 λ̂k ← η︸︷︷︸
Prior over βk

+ M

N∑

n=1

φkdnwdn

︸ ︷︷ ︸
Multiply the update by M

,

k = {1, . . . ,K}
7 Set λt ← (1− ρt)λt−1 + ρtλ̂

ρt is the adaptive learning rate
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SVI Pseudocode

For k = {1, . . . ,K}:

λ̂k ← η +M

N∑

n=1

φkdnwdn

λ̂k is the estimate of the variational parameter

We update λt to be a weighted sum of its previous value
and the proposed estimate.
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What do we gain?

Lets us scale up to much larger datasets

Faster convergence

Figure: Per word predictive probability for 100-topic LDA. SVI
converges faster than batch variational inference. Taken from
Hoffman et al. (2013)
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Deep Generative Model

Can we give an efficient learning algorithm for bayesian
networks like this:

x

z
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Deep Generative Model

Or deeper latent variable models like this?

x1 x2

z1 z2

z3 z4

z5
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Outline

Reset the notation from LDA, we’re starting afresh

First, a simple model to learn the technique, then a more
complex latent variable model
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Simple Generative Model

x

z

z ∼ p(z) x ∼ p(x|z)

Assume that θ are the parameters of the generative model

Includes the parameters of the prior p(z) and the
conditional p(x|z)
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New methods for Learning

Based on recent work in learning graphical models (Rezende
et al. , 2014), (Kingma & Welling, 2013)

In variational EM, every point in our dataset had an
associated set of posterior parameters
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New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function

The output of this function will be the parameters of the
variational distribution

We will approximate the posterior with this distribution

So previously the q(z) we assumed will now be qφ(z|x)

For every x, we get a different set of posterior parameters

Optimization Problem: maxφ,θ
∑N

i=1 L(xi; θ, φ)
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New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function
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New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function

The output of this function will be the parameters of the
variational distribution

We will approximate the posterior with this distribution

So previously the q(z) we assumed will now be qφ(z|x)
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New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function

The output of this function will be the parameters of the
variational distribution

We will approximate the posterior with this distribution

So previously the q(z) we assumed will now be qφ(z|x)

For every x, we get a different set of posterior parameters
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i=1 L(xi; θ, φ)

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Bayesian Networks & Deep-Learning
Learning
Summary of DGMs

New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function

The output of this function will be the parameters of the
variational distribution

We will approximate the posterior with this distribution

So previously the q(z) we assumed will now be qφ(z|x)
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New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function

The output of this function will be the parameters of the
variational distribution

We will approximate the posterior with this distribution

So previously the q(z) we assumed will now be qφ(z|x)

For every x, we get a different set of posterior parameters
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i=1 L(xi; θ, φ)
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New Methods for Learning

We’ll use a single variational approximation for all
datapoints

To do that, we will learn a conditional, parametric
function

The output of this function will be the parameters of the
variational distribution

We will approximate the posterior with this distribution

So previously the q(z) we assumed will now be qφ(z|x)

For every x, we get a different set of posterior parameters

Optimization Problem: maxφ,θ
∑N

i=1 L(xi; θ, φ)
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ELBO

L(x; θ, φ) =

∫

z
qφ(z|x) log

pθ(x, z)

qφ(z|x)

=

∫

z
qφ(z|x) log pθ(x|z)−

∫

z
qφ(z|x) log

qφ(z|x)

pθ(z)

= Eqφ(z|x)[log pθ(x, z)]︸ ︷︷ ︸
Expectation of Joint Distribution

+ H(qφ(z|x))︸ ︷︷ ︸
Entropy of qφ(z|x)

(1)
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Key Points

Parametric q(z|x;φ)

We’re going to learn a conditional parametric approximation
q(z|x;φ) to p(z|x), the posterior distribution.

Shared φ

Learning a conditional model, q(z|x;φ) where φ will be shared
for all x

Gradient Ascent

We’re going to perform joint optimization of θ, φ on
maxθ,φ

∑N
i=1 L(xi; θ, φ)

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Bayesian Networks & Deep-Learning
Learning
Summary of DGMs

Plate Model

x

zφ θ

Figure: Learning DGMs

Use Stochastic Gradient Ascent to learn this model

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Bayesian Networks & Deep-Learning
Learning
Summary of DGMs

Putting it all together

L(x; θ, φ) = Ez∼qφ(z|x) [log pθ(x, z)] + H(qφ(z|x))

Step 1: Sample a datapoint from dataset: x ∼ D
Posterior Inference: Evaluate qφ(z|x) to obtain parameters
of posterior

Step 2: Sample z1:K ∼ qφ(z|x)
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Putting it all together

L(x; θ, φ) = Ez∼qφ(z|x) [log pθ(x, z)]︸ ︷︷ ︸
(a)

+ H(qφ(z|x))︸ ︷︷ ︸
(b)

Step 3: Estimate ELBO

Approximate (a) as a Monte Carlo estimate over K samples

(b) typically an analytic function of φ
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Putting it all together

Compute gradients of L(x; θ, φ) = Ez∼qφ(z|x) [log pθ(x, z)]︸ ︷︷ ︸
(a)

+ H(qφ(z|x))︸ ︷︷ ︸
(b)

Step 4: Compute gradients: ∇θL(x; θ, φ),∇φL(x; θ, φ)

First look at gradients with respect to θ

∇θL(x; θ, φ) = Ez [∇θ log p(x, z; θ)] +∇θH(qφ(z|x)||p(z))
We approximate these gradients using a Monte-Carlo
estimator with the K samples
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Putting it all together

Compute gradients of L(x; θ, φ) = Ez∼qφ(z|x) [log pθ(x, z)]︸ ︷︷ ︸
(a)

+ H(qφ(z|x))︸ ︷︷ ︸
(b)

Step 4: Compute gradients: ∇θL(x; θ, φ),∇φL(x; θ, φ)

Now look at gradients with respect to φ

As before, what we would like is to move the gradient into
the expectation and approximate it with a Monte-Carlo
estimator

The issue is that the expectation also depends on φ
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Putting it all together

Recent Work

What we want: ∇E [f ] = E
[
∇f̃
]

We can write the gradient of an expectation as an
expectation of gradients Ranganath et al. (2014); Kingma
& Welling (2013); Rezende et al. (2014)
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Putting it all together

Compute gradients of L(x; θ, φ) = Ez∼qφ(z|x) [log pθ(x, z)]︸ ︷︷ ︸
(a)

+ H(qφ(z|x))︸ ︷︷ ︸
(b)

Step 4: Compute gradients: ∇θL(x; θ, φ),∇φL(x; θ, φ)

Write the gradient of an expectation as an expectation of
gradients Ranganath et al. (2014); Kingma & Welling
(2013); Rezende et al. (2014)

We approximate the gradients using a Monte-Carlo
estimator with the K samples
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Putting it all together

Update θ and φ

Step 5: Update parameters:

θ ← θ + ηθ∇θL(x; θ, φ)

and
φ← φ+ ηφ∇φL(x; θ, φ)
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Putting it all together

Pseudocode

Step 1: Sample a datapoint from dataset: x ∼ D
Step 2: Perform posterior inference: Sample
z1:K ∼ q(z|x;φ)

Step 3: Estimate ELBO

Step 4: Approximate gradients: ∇θL(x; θ, φ),∇φL(x; θ, φ)
(Gradients are Monte Carlo estimates over K samples )

Step 5: Update parameters:

θ ← θ + ηθ∇θL(x; θ, φ)

and
φ← φ+ ηφ∇φL(x; θ, φ)

Step 6: Go to Step 1
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Gaussian DGMs

This is a very general framework capable of learning many
different kinds of graphical models

Lets consider a simple set of DGMs is where priors and the
conditionals are Gaussian
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Assumption on q(z|x)

q(z|x)

Assume q(z|x;φ) approximates the posterior with a Gaussian
distribution z ∼ N (µ(x;φ),Σ(x;φ))

p(x, z) = p(z)p(x|z)

L(x; θ, φ) = Eqφ(z|x)[log pθ(x, z)]︸ ︷︷ ︸
Function of θ,φ

+ H(qφ(z|x))︸ ︷︷ ︸
Function of φ

For Multivariate Gaussian distributions of dimension D:

H(qφ(z|x)) =
1

2
D [1 + log 2π] +

1

2
|detΣ(x;φ)|
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Location and Scale transformations

We’ll need one more tool in our toolbox. This is specific to
Gaussian latent variable models.

In some cases, we can sample from distribution A and
transform the samples to appear as if they came from
distribution B.

Easy to see in the univariate Gaussian case

z ∼ N (µ, σ2) is equivalent to z = µ+ σε where ε ∼ N (0, 1)

Therefore:

Ez∼N (µ,σ2) [f(z)] = Eε∼N (0,1) [f(µ+ εσ)]

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Bayesian Networks & Deep-Learning
Learning
Summary of DGMs

Gradients of L(x; θ, φ)

Gradients with respect to θ

∇θL = ∇θEqφ(z|x)[log pθ(x, z)] +∇θHφ

= Eqφ(z|x)[∇θ log pθ(x, z)]

Gradients with respect to φ

Define Σφ(x) := Rφ(x)Rφ(x)T

∇φL = ∇φEz∼qφ(z|x)[log pθ(x, z)] +∇φHφ

(Using Location and Scale Transformation)

= ∇φEε∼N (0;I)[log pθ(x, µφ(x) + Rφ(x)ε)] +∇φHφ

= Eε∼N (0;I)[∇φ log pθ(x, µφ(x) + Rφ(x)ε)] +∇φHφ
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Gradients of L(x; θ, φ)

The gradients are expectations!
We approximate them with a Monte-Carlo estimate

Gradients with respect to θ: for z ∼ qφ(z|x)

∇θL = Ez∼qφ(z|x)[∇θ log pθ(x, z)] =
1

K

K∑

k=1

[∇θ log pθ(x, zk)]

Gradients with respect to φ: for ε ∼ N (0; I)

∇φL = Eε∼N (0;I)[∇φ log pθ(x, µφ(x) + Rφ(x)ε)] +∇φHφ

=
1

K

K∑

k=1

[∇φ log pθ(x, µφ(x) + Rφ(x)εk)] +∇φHφ
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Learning: A graphical view

Lets see a pictoral representation of this process for a single
data point x
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Learning: A graphical view

For a given datapoint x, do inference to infer the
parameters that form the approximation to the posterior

At this point, we can evaluate the entropy H(qφ(z|x))

x

µ(x),Σ(x)

Figure: Step 1 & 2: Sampling datapoint & inferring µ(x),Σ(x)
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Learning: A graphical view

Sample z1:K from posterior z1:K ∼ N (µ(x),Σ(x))

Now, we have a fully observed bayesian network

x

µ(x),Σ(x)z

Figure: Step 2: Sampling z
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Learning: A graphical view

Evaluate ELBO, ie.
L(x; θ, φ) = Ez∼qφ(z|x) [log pθ(x, z)] + H(qφ(z|x)

x

µ(x),Σ(x)z

Figure: Step 3: Evaluating ELBO
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Learning: A graphical view

Compute ∇θL(x; θ, φ) = Ez∼qφ(z|x) [∇θ logθ p(x, z)]

x

µ(x),Σ(x)z

Figure: Step 4: Compute Gradients
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Learning: A graphical view

Use the Location and Scale Transformations:

Compute

∇φL(x; θ, φ) = Eε∼N (0;I) [∇φ log p(x, µ(x;φ) + R(x;φ)ε)]

+∇φH(qφ(z|x))

x

µ(x),Σ(x)z

Figure: Step 4: Compute Gradients
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Easy to Learn

Specific forms of these models also go by the name
Variational Autoencoders.

There are ways to learn non-Gaussian graphical models
(not covered)

Easily implemented in popular libraries such as
Torch/Theano!

There is a Torch implementation you can play around with
in: https://github.com/clinicalml/dgm

Rahul G. Krishnan Learning Deep Generative Models
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Combining Deep Learning with Graphical Models

x1 x2

z1 z2

z3 z4

z5

We haven’t yet talked about the parameterizations of the
conditional distributions (in both p and q)

One possibility is to use a neural network. Results in a
powerful, highly non-linear transformation

Rahul G. Krishnan Learning Deep Generative Models



Introduction
Variational Inference

Deep Generative Models
Summary

Bayesian Networks & Deep-Learning
Learning
Summary of DGMs

Generating Digits from MNIST

Figure: Generating MNIST Digits (Kingma & Welling, 2013)
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Generating Faces

With a DGM trained on images of faces, lets look at how
the samples vary as we move around in the latent
dimension

Traversing the face manifold (Radford, 2015)

Morphing Faces (Dumoulin, 2015)

Many more such examples!
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Limitations of DGMs

New methods allow us to learn a broad and powerful class
of generative models.

1 Can be tricky to learn.
2 No theoretical guarantees on the optimization problem.
3 Interpretability: Does z really mean anything? Can you & I

put a name to the quantity it represents?
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Theres a lot more to do! Active area of research.

Probabilistic Programming: If I can write out my
graphical model, can I automatically learn it using
techniques from stochastic variational inference?
Tightening the bound on log p(x): How can we form
better and more complex approximations to the posterior
distributions?
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