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Final exam

I will hold office hours this Thursday, 3:30pm. Bring your
exam-related questions!

Final exam in class next week. Closed book; no
calculators/phones/computers

Final covers everything up to and including this week’s lab (12/16)
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Today’s lecture

1 Integer linear programming

2 MAP inference as an integer linear program

3 Linear programming relaxations for MAP inference

4 Dual decomposition
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Integer linear programming

max y subject to: −x + y ≤ 1; 3x + 2y ≤ 12; 2x + 3y ≤ 12; x , y ∈ Z+

(Source: Wikipedia)
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Integer linear programming

Applications:

Production planning

Scheduling (e.g., assigning buses or subways to routes)

Telecommunication networks

Bayesian network structure learning
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MAP inference

Recall the MAP inference task,

arg max
x

p(x), p(x) =
1

Z

∏

c∈C
φc(xc)

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

Since the normalization term is simply a constant, this is equivalent to

arg max
x

∏

c∈C
φc(xc)

(called the max-product inference task)

Furthermore, since log is monotonic, letting θc(xc) = lg φc(xc), we have that
this is equivalent to

arg max
x

∑

c∈C
θc(xc)

(called max-sum)
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Motivating application: image denoising

Input (left): noisy image

Output (right): denoised image

Example of MAP inference: image denoising

Inference is combining prior beliefs with observed evidence to form a
prediction.

�! MAP inference
2 / 37
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Motivating application: protein side-chain placement

Find “minimum energy” conformation of amino acid side-chains along
a fixed carbon backbone:  Given desired 3D structure, choose amino-acids giving the most stable folding

  Joint distribution over the variables is given by

   Key problems

  Find marginals:

  Find most likely assignment (MAP): 

Probabilistic inference

Partition function

Protein backbone

Side-chain�
(corresponding to�

 1 amino acid)

X1

X2 X3
X3

X1

X2 

X4

θ34(x3, x4)

θ12(x1, x2)
θ13(x1, x3)

“Potential” function�
 for each edge

(Yanover, Meltzer, Weiss ‘06)

Focus of this talk

Orientations of the side-chains are represented by discretized angles
called rotamers

Rotamer choices for nearby amino acids are energetically coupled
(attractive and repulsive forces)
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Motivating application: dependency parsing

Given a sentence, predict the dependency tree that relates the words:
1.2 Motivating Applications 5

Non-Projective Dependency Parsing

�

Figure 1.1: Example of dependency parsing for a sentence in English. Every
word has one parent, i.e. a valid dependency parse is a directed tree. The red
arc demonstrates a non-projective dependency.

x = {xi}i2V that maximizes
X

i2V

✓i(xi) +
X

ij2E

✓ij(xi, xj).

Without additional restrictions on the choice of potential functions, or which

edges to include, the problem is known to be NP-hard. Using the dual

decomposition approach, we will break the problem into much simpler sub-

problems involving maximizations of each single node potential ✓i(xi) and

each edge potential ✓ij(xi, xj) independently from the other terms. Although

these local maximizing assignments are easy to obtain, they are unlikely

to agree with each other without our modifying the potential functions.

These modifications are provided by the Lagrange multipliers associated

with agreement constraints.

Our second example is dependency parsing, a key problem in natural

language processing (McDonald et al., 2005). Given a sentence, we wish

to predict the dependency tree that relates the words in the sentence. A

dependency tree is a directed tree over the words in the sentence where

an arc is drawn from the head word of each phrase to words that modify

it. For example, in the sentence shown in Fig. 1.1, the head word of the

phrase “John saw a movie” is the verb “saw” and its modifiers are the

subject “John” and the object “movie”. Moreover, the second phrase “that

he liked” modifies the word “movie”. In many languages the dependency

tree is non-projective in the sense that each word and its descendants in the

tree do not necessarily form a contiguous subsequence.

Formally, given a sentence with m words, we have m(m � 1) binary arc

selection variables xij 2 {0, 1}. Since the selections must form a directed

tree, the binary variables are governed by an overall function ✓T (x) with

the idea that ✓T (x) = �1 is used to rule out any non-trees. The selections

are further biased by weights on individual arcs, through ✓ij(xij), which

depend on the given sentence. In a simple arc factored model, the predicted

Arc from head word of each phrase to words that modify it

May be non-projective: each word and its descendents may not be a
contiguous subsequence

m words =⇒ m(m − 1) binary arc selection variables xij ∈ {0, 1}
Let x|i = {xij}j 6=i (all outgoing edges). Predict with:

max
x
θT (x) +

∑

ij

θij(xij) +
∑

i

θi |(x|i )
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MAP as an integer linear program (ILP)

MAP as a discrete optimization problem is

arg max
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj).

To turn this into an integer linear program, we introduce indicator variables

1 µi (xi ), one for each i ∈ V and state xi
2 µij(xi , xj), one for each edge ij ∈ E and pair of states xi , xj

The objective function is then

max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

What is the dimension of µ, if binary variables?
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What are the constraints?

Force every “cluster” of variables to choose a local assignment:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ∈ {0, 1} ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these local assignments are globally consistent:

Xj!

Xi!

Xk!

Figure 2-2: The pairwise consistency constraints ensure that two edges that have a node in
common must have edge marginal distributions that are consistent on that node.

The approach pursued in this thesis is to directly solve a linear programming relaxation
of the MAP inference problem. For all of the examples above where BP is known to do
well – tree structured graphical models and inference problems arising from minimum cut
and matchings – the LP relaxation also gives provably exact results. In Chapter 4 we show
that the LP relaxation can be solved by a message-passing algorithm that is very similar to
belief propagation. Another advantage of the BP heuristic is that it can be used together
with combinatorial algorithms (Duchi et al., 2007; Gupta et al., 2007). We will show that
the same is true for the linear programming approaches discussed in this thesis.

2.5 Linear Programming Relaxations

We discussed in Section 2.2.2 how the problems of approximating the partition function,
estimating marginal probabilities, and finding the MAP assignment in graphical models can
be formulated as (non-)linear optimization over the marginal polytope. Since optimizing
over the marginal polytope is di�cult, we could instead try relaxing the marginal polytope,
optimizing over only a small number of its constraints. As we discussed in Section 2.3,
linear programming relaxations have long been studied in combinatorial optimization, and
often lead to approximation guarantees.

The marginal polytope is defined by the di�cult global constraint that the edge marginals
in µ must arise from some common joint distribution. The LP relaxations presented in this
section relax this global constraint, instead enforcing it only over some subsets of the vari-
ables.

2.5.1 Pairwise Relaxation

The pairwise LP relaxation, also known as the first-order relaxation, has constraints that
enforce that the marginals for every pair of edges that share a variable are consistent with
each other on that variable (see Figure 2-2). These pairwise consistency constraints, also
called local consistency constraints, are given by:

LOCAL(G) =

8
>><
>>:

µ 2 Rd

��������

P
xj

µij(xi, xj) = µi(xi) 8ij 2 E, xiP
xi

µij(xi, xj) = µj(xj) 8ij 2 E, xjP
xi

µi(xi) = 1 8i 2 V

µi(xi) � 0, µij(xi, xj) � 0

9
>>=
>>;

(2.10)

The pairwise LP relaxation is then given by the following optimization problem:

max
µ2LOCAL(G)

h✓, µi . (2.11)

22

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj
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MAP as an integer linear program (ILP)

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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Visualization of integer µ vectors

Marginal polytope!
1!
0!
0!
1!
1!
0!
1"
0"
0"
0"
0!
1!
0!
0!
0!
0!
1!
0"

�µ =

= 0!

= 1! = 0!X2!

X1!

X3 !

0!
1!
0!
1!
1!
0!
0"
0"
1"
0"
0!
0!
0!
1!
0!
0!
1!
0"

�µ� =

= 1!

= 1! = 0!X2!

X1!

X3 !

1

2

�
�µ� + �µ

�

valid marginal probabilities!

(Wainwright & Jordan, ’03)!

Edge assignment for"
X1X3!

Edge assignment for"
X1X2!

Edge assignment for"
X2X3!

Assignment for X1 "

Assignment for X2 "

Assignment for X3!

Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
�

µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]
�

(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V | + k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x� = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x�) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17
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Linear programming relaxation for MAP

Integer linear program was:

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Relax integrality constraints, allowing the variables to be between 0 and 1:

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi
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LP relaxation optimizes over larger feasible space

max ✓ · µ

µ 2

✓
New, fractional 
vertices!

Figure 2-3: Sketch of the local consistency polytope, which is a relaxation of the marginal
polytope (shown with dashed lines). Whereas the marginal polytope had only integral
vertices (red), the relaxation introduces new fractional vertices (blue).

LOCAL(G) is an outer bound on M(G), i.e. M(G) ✓ LOCAL(G), because every
marginal vector µ that is consistent with some joint distribution must satisfy these marginal-
ization constraints. Another way to verify that these constraints are valid is to observe that
they are satisfied by each of the integral vertices �(x) 2 M(G). Then, since the con-
straints are linear, they must also hold for any convex combination of the vertices of M(G),
i.e. all points in M(G). Since we are now maximizing over a larger space, we have that
maxµ2M(G)h✓, µi  maxµ2LOCAL(G)h✓, µi, i.e. the relaxation provides an upper bound on
the value of the MAP assignment.

In general, the local consistency polytope, LOCAL(G), has both integral and fractional
vertices (see Figure 2-3). In particular, all of the vertices of the marginal polytope are also
vertices of the local consistency polytope. It is straightforward to show that there are no
new integer points that satisfy the constraints of LOCAL(G). Thus, we obtain a certificate
of optimality for this relaxation: if we solve the pairwise LP relaxation and obtain an integer
solution, it is guaranteed to be a MAP assignment.

There are several classes of graphical models – corresponding both to the choice of
graph structure, and the parameters – where the pairwise LP relaxation is known to be
tight, meaning that on these instances the LP relaxation is guaranteed to have an integer
solution. For example, if the graphical model has a tree structure (see Figure 2-4(a)), the
junction tree theorem can be used to prove that the local consistency polytope has only
integer extreme points.

As we mentioned earlier, several well-known combinatorial optimization problems can
be posed as inference in a graphical model. Consider, for example, a graphical model for
finding the maximum matching on a bipartite graph. In formulating the graphical model
for matching, some of the potentials ✓ij(xi, xj) have value �1. The corresponding local
assignments will clearly never be optimal, so we can consider the projection of the marginal
polytope onto the assignment µij(xi, xj) = 0. In this case, the local consistency polytope,
after projection, is isomorphic to the matching polytope, and has only integer solutions.

Much is known about the MAP problem in binary-valued pairwise MRFs because this
special case is equivalent to the maximum cut problem. In this case, the marginal polytope is
isomorphic to the cut polytope, the convex hull of all valid graph cuts (Deza & Laurent, 1997;
Sontag, 2007). The pairwise LP relaxation can be shown to have the following properties
in this setting:

• The fractional vertices are half integral (Deza & Laurent, 1997). Each edge marginal

23
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Linear programming relaxation for MAP
Linear programming relaxation is:

LP(θ) = max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij∈E

∑
xi ,xj

θij (xi , xj )µij (xi , xj )

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi∑
xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑
xj

µij (xi , xj ) ∀ij ∈ E , xi

µj (xj ) =
∑
xi

µij (xi , xj ) ∀ij ∈ E , xj

Linear programs can be solved efficiently! Simplex method, interior point,
ellipsoid algorithm

Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher

MAP(θ) ≤ LP(θ)

LP relaxation is tight for tree-structured MRFs. Related to PS5, Q1.

David Sontag (NYU) Inference and Representation Lecture 14, Dec. 15, 2015 16 / 33



Local consistency constraints are exact for trees

Theorem: The local consistency constraints exactly define the marginal
polytope for a tree-structured MRF:

(a) Tree structured MRF

✓ij(xi, xj) = 1 if !

0 otherwise"

xi = xj

(b) MRF with attractive potentials

Figure 2-4: Examples of Markov random fields where the pairwise LP relaxation is known
to have integer solutions. (a) When the graphical model decomposes according to a tree
structure. (b) When the variables are binary and the potential functions are submodular,
or attractive.

µij(xi, xj) is either integral, or is equal to

xj = 0 xj = 1
xi = 0 .5 0
xi = 1 0 .5

or
xj = 0 xj = 1

xi = 0 0 .5
xi = 1 .5 0

.

See Example 1 below for a MRF where the LP relaxation has a fractional solution.

• Persistency, which guarantees that there exists a MAP assignment that extends the
integer parts of a fractional vertex (Nemhauser & Trotter, 1975; Boros & Hammer,
2002). This can be applied to some non-binary MRFs by using a clever transformation
of the problem into a binary MRF (Kohli et al., 2008).

• Gives a 2-approximation when applied to the maximum cut problem.4

• The relaxation is tight when the edge potentials are submodular, meaning that there
exists some labeling of the states of each variable as 0 or 1 such that, for all edges,

✓ij(0, 0) + ✓ij(1, 1) � ✓ij(1, 0) + ✓ij(0, 1) (2.12)

(Johnson, 2008, p.119). In Ising models, this property is typically referred to as the
potentials being attractive or ferromagnetic. We discussed non-binary generalizations
of this in Section 2.3 with regards to the metric labeling problem.

Inconsistencies cause fractional solutions

In graphs with cycles, inconsistencies can easily arise that lead to fractional solutions to the
pairwise LP relaxation.

Example 1. Consider the simple three node MRF shown in Figure 2-4(b). Suppose that
instead of having attractive potentials, the edge potentials were repulsive, e.g.

✓ij(xi, xj) = 1 if xi 6= xj , and 0 otherwise. (2.13)

4To put this in perspective: A 2-approximation for max-cut could also be obtained using a randomized
algorithm that simply labels each variable 0 or 1 uniformly at random.

24

Proof: Consider any ~µ ∈ ML. We specify a distribution pT (x) for which
µi (xi ) and µij(xi , xj) are the pairwise and singleton marginals of the
distribution pT

Let X1 be the root of the tree, and direct edges away from root. Then,

pT (x) = µ1(x1)
∏

i∈V\X1

µi,pa(i)(xi , xpa(i))

µpa(i)(xpa(i))
=

∏

(i,j)∈T

µij(xi , xj)

µi (xi )µj(xj)

∏

j∈V
µj(xj).

Because of the local consistency constraints, each term in the product can
be interpreted as a conditional probability.
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Example for non-tree models

For non-trees, the local consistency constraints are an outer bound on the
marginal polytope

Example of ~µ ∈ ML\M for a MRF on binary variables:

0" .5"

.5" 0" X3!

X1!

X2 !
µij(xi, xj) =

Xj"="1"

Xi"="0"

Xi"="1"

Xj"="0"

To see that this is not in M, note that it violates the following triangle
inequality (valid for marginals of MRFs on binary variables):

∑

x1 6=x2

µ1,2(x1, x2) +
∑

x2 6=x3

µ2,3(x2, x3) +
∑

x1 6=x3

µ1,3(x1, x3) ≤ 2.
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Today’s lecture

1 Integer linear programming

2 MAP inference as an integer linear program

3 Linear programming relaxations for MAP inference

4 Dual decomposition
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Dual decomposition

Consider the MAP problem for pairwise Markov random fields:

MAP(θ) = max
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj).

If we push the maximizations inside the sums, the value can only increase:

MAP(θ) ≤
∑

i∈V
max
xi

θi (xi ) +
∑

ij∈E
max
xi ,xj

θij(xi , xj)

Note that the right-hand side can be easily evaluated

One can always reparameterize a distribution by operations like

θnewi (xi ) = θoldi (xi ) + f (xi )

θnewij (xi , xj) = θoldij (xi , xj)− f (xi )

for any function f (xi ), without changing the distribution/energy
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Dual decomposition
8 Introduction to Dual Decomposition for Inference

x1 x2

x3 x4

✓f(x1, x2)

✓h(x2, x4)

✓k(x3, x4)

✓g(x1, x3)

x1

�f2(x2)

�f1(x1)

�k4(x4)�k3(x3)

�g1(x1)
+

� �

� ��f1(x1)

�g3(x3)
�g1(x1)

�
� �h2(x2)

�h4(x4)

�
�

+ x3

�g3(x3)

�k3(x3)
x4 +

�k4(x4)

�h4(x4)

+x2

�f2(x2)

�h2(x2)

✓f(x1, x2)

✓h(x2, x4)

✓k(x3, x4)

✓g(x1, x3)

x3 x4

x4

x2

x2x1

x1

x3

Figure 1.2: Illustration of the the dual decomposition objective. Left: The
original pairwise model consisting of four factors. Right: The maximization
problems corresponding to the objective L(�). Each blue ellipse contains the
factor to be maximized over. In all figures the singleton terms ✓i(xi) are set
to zero for simplicity.

pairwise model.

We will introduce algorithms that minimize the approximate objective

L(�) using local updates. Each iteration of the algorithms repeatedly finds

a maximizing assignment for the subproblems individually, using these to

update the dual variables that glue the subproblems together. We describe

two classes of algorithms, one based on a subgradient method (see Section

1.4) and another based on block coordinate descent (see Section 1.5). These

dual algorithms are simple and widely applicable to combinatorial problems

in machine learning such as finding MAP assignments of graphical models.

1.3.1 Derivation of Dual

In what follows we show how the dual optimization in Eq. 1.2 is derived

from the original MAP problem in Eq. 1.1. We first slightly reformulate

the problem by duplicating the xi variables, once for each factor, and then

enforce that these are equal. Let xf
i denote the copy of xi used by factor f .

Also, denote by xf
f = {xf

i }i2f the set of variables used by factor f , and by

xF = {xf
f}f2F the set of all variable copies. This is illustrated graphically

in Fig. 1.3. Then, our reformulated – but equivalent – optimization problem
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Dual decomposition

Define:

θ̃i (xi ) = θi (xi ) +
∑

ij∈E
δj→i (xi )

θ̃ij(xi , xj) = θij(xi , xj)− δj→i (xi )− δi→j(xj)

It is easy to verify that
∑

i

θi (xi ) +
∑

ij∈E
θij(xi , xj) =

∑

i

θ̃i (xi ) +
∑

ij∈E
θ̃ij(xi , xj) ∀x

Thus, we have that:

MAP(θ) = MAP(θ̃) ≤
∑

i∈V
max
xi

θ̃i (xi ) +
∑

ij∈E
max
xi ,xj

θ̃ij(xi , xj)

Every value of δ gives a different upper bound on the value of the MAP!

The tightest upper bound can be obtained by minimizing the r.h.s. with
respect to δ!
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Dual decomposition

We obtain the following dual objective: L(δ) =

∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

This provides an upper bound on the MAP assignment!

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ)

How can find δ which give tight bounds?
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Solving the dual efficiently

Many ways to solve the dual linear program, i.e. minimize with respect to δ:

∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

One option is to use the subgradient method

Can also solve using block coordinate-descent, which gives algorithms
that look very much like belief propagation:
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Max-product linear programming (MPLP) algorithm

Input: A set of factors θi (xi ), θij(xi , xj)

Output: An assignment x1, . . . , xn that approximates the MAP

Algorithm:

Initialize δi→j(xj) = 0, δj→i (xi ) = 0, ∀ij ∈ E , xi , xj

Iterate until small enough change in L(δ):

For each edge ij ∈ E (sequentially), perform the updates:

δj→i (xi ) = −1

2
δ−ji (xi ) +

1

2
max
xj

[
θij(xi , xj) + δ−ij (xj)

]
∀xi

δi→j(xj) = −1

2
δ−ij (xj) +

1

2
max
xi

[
θij(xi , xj) + δ−ji (xi )

]
∀xj

where δ−ji (xi ) = θi (xi ) +
∑

ik∈E ,k 6=j δk→i (xi )

Return xi ∈ arg maxx̂i θ̃
δ
i (x̂i )
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Generalization to arbitrary factor graphs
16 Introduction to Dual Decomposition for Inference

Inputs:

A set of factors θi(xi), θf (xf ).

Output:

An assignment x1, . . . , xn that approximates the MAP.

Algorithm:

Initialize δfi(xi) = 0, ∀f ∈ F, i ∈ f, xi.

Iterate until small enough change in L(δ) (see Eq. 1.2):
For each f ∈ F , perform the updates

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i


θf (xf ) +

�

î∈f

δ−f

î
(xî)


 , (1.16)

simultaneously for all i ∈ f and xi. We define δ−f
i (xi) = θi(xi) +

�
f̂ �=f δf̂ i(xi).

Return xi ∈ arg maxx̂i θ̄
δ
i (x̂i) (see Eq. 1.6).

Figure 1.4: Description of the MPLP block coordinate descent algorithm
for minimizing the dual L(δ) (see Section 1.5.2). Similar algorithms can
be devised for different choices of coordinate blocks. See sections 1.5.1 and
1.5.3. The assignment returned in the final step follows the decoding scheme
discussed in Section 1.7.

1.5.1 The Max-Sum Diffusion algorithm

Suppose that we fix all of the dual variables δ except δfi(xi) for a specific f

and i. We now wish to find the values of δfi(xi) that minimize the objective

L(δ) given the other fixed values. In general there is not a unique solution

to this restricted optimization problem, and different update strategies will

result in different overall running times.

The Max-Sum Diffusion (MSD) algorithm (Kovalevsky and Koval, approx.

1975; Werner, 2007, 2008) performs the following block coordinate descent

update (for all xi simultaneously):

δfi(xi) = −1
2δ

−f
i (xi) + 1

2 max
xf\i


θf (xf ) −

�

î∈f\i

δf î(xî)


 , (1.17)

where we define δ−f
i (xi) = θi(xi) +

�
f̂ �=f δf̂ i(xi). The algorithm iteratively

chooses some f and performs these updates, sequentially, for each i ∈ f . In

Appendix 1.A we show how to derive this algorithm as block coordinate de-

scent on L(δ). The proof also illustrates the following equalization property:

after the update, we have θ̄δi (xi) = maxxf\i
θ̄δf (xf ), ∀xi. In other words, the

reparameterized factors for f and i agree on the utility of state xi.

David Sontag (NYU) Inference and Representation Lecture 14, Dec. 15, 2015 26 / 33



Experimental results

Comparison of two block coordinate descent algorithms on a 10× 10 node
Ising grid:

20 Introduction to Dual Decomposition for Inference
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Figure 1.5: Comparison of three coordinate descent algorithms on a 10⇥10
two dimensional Ising grid. The dual objective L(�) is shown as a function of
iteration number. We multiplied the number of iterations for the star update
by two, since each edge variable is updated twice.

and thus may result in faster convergence.

To assess the di↵erence between the algorithms, we test them on a pairwise

model with binary variables. The graph structure is a two dimensional 10⇥10

grid and the interactions are Ising (see Globerson and Jaakkola, 2008, for a

similar experimental setup). We compare three algorithms:

MSD - At each iteration, for each edge, updates the message from the

edge to one of its endpoints (i.e., �{i,j}i(xi) for all xi), and then updates the

message from the edge to its other endpoint.

MPLP - At each iteration, for each edge, updates the messages from the

edge to both of its endpoints (i.e., �{i,j}i(xi) and �{i,j}j(xj), for all xi, xj).

Star update - At each iteration, for each node i, updates the messages

from all edges incident on i to both of their endpoints (i.e., �{i,j}i(xi) and

�{i,j}j(xj) for all j 2 N(i), xi, xj).

MSD++ - See Section 1.5.6 below.

The running time per iteration of MSD and MPLP are identical. We let

each iteration of the star update correspond to two iterations of the edge

updates to make the running times comparable.

Results for a model with random parameters are shown in Fig. 1.5, and
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Experimental results

Performance on stereo vision inference task:

Decoded assignment!

Dual obj.!

Iteration!

Objective!

Solved optimally!

Duality gap!
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Dual decomposition = LP relaxation

Recall we obtained the following dual linear program: L(δ) =
∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

We showed two ways of upper bounding the value of the MAP assignment:

MAP(θ) ≤ LP(θ) (1)

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ) (2)

Although we derived these linear programs in seemingly very different ways,
in turns out that:

LP(θ) = DUAL-LP(θ)

The dual LP allows us to upper bound the value of the MAP assignment
without solving a LP to optimality

David Sontag (NYU) Inference and Representation Lecture 14, Dec. 15, 2015 29 / 33



Linear programming duality

(Dual) LP relaxation!

MAP assignment!
(Primal) LP relaxation!

�
µ�

x*! Integer linear program!

MAP(θ) ≤ LP(θ) = DUAL-LP(θ) ≤ L(δ)
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How to solve integer linear programs?

Local search (iterated conditional modes)

Start from an arbitrary assignment (e.g., random). Iterate:
Choose a variable. Change a new state for this variable to maximize
the value of the resulting assignment

Branch-and-bound

Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment
Can use the LP relaxation or its dual to obtain upper bounds
Lower bound obtained from value of any assignment found

Branch-and-cut (most powerful method; used by CPLEX & Gurobi)

Same as branch-and-bound; spend more time getting tighter bounds
Adds cutting-planes to cut off fractional solutions of the LP relaxation,
making the upper bound tighter
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Cutting-plane algorithm

max θ · µ

µ ∈

θ

µ∗

(a)

max θ · µ

µ ∈

θ

µ∗

(b)

max θ · µ

µ ∈

µ∗

θ

(c)

max θ · µ

µ ∈

θ

µ∗

(d)

Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b)
Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the
tighter LP relaxation. (d) Finally, we find the MAP assignment.

is motivated by the observation that it may not be necessary to add all of the constraints
that make up a higher-order relaxation such as TRI(G). In particular, it possible that the
pairwise LP relaxation alone is close to being tight, and that only a few carefully chosen
constraints would suffice to obtain an integer solution.

Our algorithms tighten the relaxation in a problem-specific way, using additional com-
putation just for the hard parts of each instance. We illustrate the general approach in
Figure 2-6. This is an example of a cutting-plane algorithm. We first solve the pairwise LP
relaxation. If we obtain an integer solution, then we have found the MAP assignment and
can terminate. Otherwise, we look for a valid constraint to add to the relaxation. By valid,
we mean that the constraint should not cut off any of the integral vertices. For example,
we show in Figure 2-7 an example of an invalid constraint that happens to cut off the MAP
assignment (so it could never be found by solving the new LP). Once we find a violated
valid constraint, we add it to the relaxation and then repeat, solving the tighter relaxation.

Cutting-plane algorithms have a long history in combinatorial optimization. Gomory
(1958) invented a generic recipe for constructing valid inequalities for integer linear pro-
gramming problems. Gomory cuts play a major role in commercial ILP solvers, such as
CPLEX’s branch-and-cut algorithm. However, for many combinatorial optimization prob-
lems it is possible to construct special purpose valid inequalities that are more effective
than Gomory cuts. For example, the cycle inequalities are known to be valid for the cut
polytope, and have been studied in polyhedral combinatorics because of its relevance to
max cut and Ising models. There is a huge literature in the operations research community
on cutting-plane algorithms for max cut that use the cycle inqualities (Barahona & Anbil,
2000; Liers et al., 2004; Frangioni et al., 2005).

To apply the cutting-plane approach, we must answer several key questions:

1. What are valid constraints for the marginal polytope?

We already discussed the pairwise and higher-order relaxations. In Chapter 3 we
introduce the cycle relaxation and the k-ary cycle inequalities, which will be more
efficient to optimize over.

2. How do we efficiently solve the linear program, even for the pairwise LP
relaxation?

28
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Course evaluation

That’s it, folks! Thanks for a great semester. Please stay and fill out the
course evaluation.
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