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Two approaches to the study of social media and politics:

1. How social media platforms transform political
communication

. Are social media creating ideological “echo

chambers”?

2. Social media as digital traces of political behavior
. Can we infer latent individual traits (e.g. political

ideology) from online ties (follows, likes...)?
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Inferring political ideology using Twitter data

I Two common patterns about social behavior:
1. Homophily: clustering in social networks along common

traits (“birds of a feather tweet together”)
2. Selective exposure: preference for information that

reinforces current views and for avoiding opinion
challenges.

I Social media networks replicate offline networks.
I

Key assumption: individuals prefer to follow political
accounts they perceive to be ideologically close.

I These decisions contain information about allocation of
scarce resource (attention).

I Use this information to estimate ideological locations of
politicians and individuals on the latent same scale.
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Spatial following model

I Users’ and politicians’ ideology (✓
i

and �
j

) are defined as
latent variables to be estimated.

I Data: “following” decisions, a matrix of binary choices (Y
ij

).
I Spatial following model: for n users, indexed by i , and m

political accounts, indexed by j :

P(y
ij

= 1|↵
j

, �
i

, �, ✓
i

, �
j

) = logit�1
⇣
↵

j

+ �
i

� �(✓
i

� �
j

)2
⌘

where:
↵

j

measures popularity of politician j

�
i

measures political interest of user i

� is a normalizing constant

More
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Intuition of the model

Probability that Twitter user i follows politician j , as a function of
the user’s ideology:

φj1 = −1.51 αj1 = 3.51
φj2 = 1.09 αj2 = 2.59

−2 0 2
θi, Ideology of Twitter user i

Pr
(y

ij
=

1)
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Estimation

I Goal of learning:
I ✓

i

: ideological positions of users i = 1, . . . , n

I �
j

: ideological positions of political accounts j = 1, . . . , m

I Likelihood function:

p(y|✓,�, ↵,�, �) =
nY

i=1

mY

j=1

logit�1(⇡
ij

)y

ij (1 � logit�1(⇡
ij

))1�y

ij

where ⇡
ij

= ↵
j

+ �
i

� �(✓
i

� �
j

)2

I Exact inference is intractable ! MCMC (approx. inference)
I Estimation:

I First stage: HMC in Stan with random sample of Y to compute
posterior distribution of j-indexed parameters.

I Second stage: parallelized MH in R for rest of i-indexed
parameters (assuming independence), on NYU’s HPC.
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Data

I
m = list of 620 popular political accounts in the U.S.
! Legislators, president, candidates, other political figures,

media outlets, journalists, interest groups. . .

I
n = followers of at least one of these accounts
! 30.8M users (⇠75% of U.S. users)
! 100K of these were matched with voter files

I States: AK, CA, FL, OH, PA.
I Unique, perfect matches on first and last name, and county.

I Code:
I Method: github.com/pablobarbera/twitter ideology
I Applications: github.com/SMAPPNYU/echo chambers
I Data collection: streamR, Rfacebook packages for R

(available on CRAN)
I Data analysis: github.com/pablobarbera/pytwools (python)
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Results
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Validation

This method is able to correctly classify and scale Twitter users
on the left-right dimension:

1. Political accounts
I Correlation with measures based on roll-call votes.

2. Ordinary citizens
I Individual and aggregate-level survey responses
I Voting registration files

It is also able to predict change over time.
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Political elites

Ideal Points of Members of the 113th U.S. Congress

House Senate
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Ordinary Users

Comparison with ideology estimates from aggregated surveys
(Lax and Phillips, 2012; Tausanovitch and Warshaw, 2013)
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Ordinary Users

Republicans are more conservative than Democrats
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Application: Ideology of Presidential Candidates
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Application: Twitter as an Ideological Echo Chamber?
Tweets mentioning Obama Tweets mentioning Romney
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Application: Twitter as an Ideological Echo Chamber?

Barberá, Jost, Nagler, Tucker, & Bonneau (2015) “Tweeting From Left
to Right: Is Online Political Communication More Than an Echo
Chamber?” Psychological Science
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Other applications

Ideology of media outlets
Ideological Asymmetries
Multidimensional Policy Spaces
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Two approaches to the study of social media and politics:

1. How social media platforms transform political
communication

. As voters are able to directly interact with politicians,

does the quality of political representation improve?

Social media as digital traces of political behavior
. Are legislators’ and citizens’ social media messages a

valid proxy for the attention they give to different political

issues?
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Political Representation

Public Opinion Policy
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Political Representation

Issues Voters Discuss Issues Legislators Discuss

Do Legislators Accurately Represent Voters’ Interests?
Who Leads? Who Follows?

Barberá, Nagler, Egan, Bonneau, Jost, & Tucker (2014) “Leaders or
Followers? Measuring Political Responsiveness in the U.S. Congress
Using Social Media Data.” APSA Conference Paper.
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Outline

1. Analyze tweets sent by Members of U.S. Congress and their
followers using topic modeling techniques.

2. Estimate the importance (frequency of discussion) of 100
different issues in the revealed expressed political agenda for
legislators and constituents

3. Political Congruence: are Members of Congress
discussing the same set of issues as their constituents?

4. Political Responsiveness: do topics discussed by
Members of Congress temporally precede or follow topics
discussed by the voters?

26 / 54



Data

651,116 tweets by Members of U.S. Congress, from Jan. 1, 2013 to
Dec. 31, 2014 (113th Congress), collected by the Social Media and
Political Participation Lab (SMaPP) using Twitter’s Streaming API.
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Citizens’ Tweets

Collected all tweets for 3 samples of citizens:
1. Informed public:

I Followers of 5 major media outlets (CNN, FoxNews, MSNBC,
NYT, WSJ) located in U.S. (filtered by time zone)

I Random sample of 10,000 (out of ⇠30M)
2. Republican Party Supporters:

I Follow 3+ Rep MCs and no Dem MCs
I Random sample of 10,000 (out of 203,140)

3. Democratic Party Supporters:
I Follow 3+ Dem MCs and no Rep MCs
I Random sample of 10,000 (out of 67,843)
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Table : Number of tweets in dataset

Group N Avg. Min Max Tweets
House Republicans 238 1,215 70 8,857 267,311
House Democrats 207 1,177 113 5,993 222,491
Senate Republicans 46 1,532 73 6,627 67,412
Senate Democrats 56 1,616 150 10,736 87,307
Informed Public 10K 948 2 5,861 9,487,382
Rep. Supporters 10K 1,091 2 8,804 10,911,813
Dem. Supporters 10K 1,306 2 5,122 13,058,947
Period of analysis: January 1, 2013 to December 31, 2014.

29 / 54



Political Representation

Public Opinion Policy

Media

Media data:
I 273,007 tweets from 36 largest media outlets in U.S. (print,

broadcast, online) over same period.
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From Tweets to Topics

4 steps in our analysis
1. Tweets from Members of Congress are preprocessed and

split by day, party and chamber (N=2,920 documents)
2. Latent Dirichlet Allocation (Blei, 2003):

I Each document is a mixture over K = 100 latent topics.
I Topics are distributions over V = 75, 000 n-grams (up to

trigrams, selected by frequency; keeping hashtags)
I Estimated parameters:

�̂ Distribution of n-grams over topics (K ⇥ V )
✓̂ Distribution of topics over documents (K ⇥ N)

3. Similar text processing for tweets from citizens and NYT
tweets (split by day and group)

4. Using simulation, compute posterior distribution of ✓̂
F

for
observed n-grams for citizens and media
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Latent Dirichlet allocation (LDA)
I

Topic models are powerful tools for exploring large data sets
and for making inferences about the content of documents

!"#$%&'() *"+,#)

+"/,9#)1
+.&),3&'(1
"65%51

:5)2,'0("'1
.&/,0,"'1
-

.&/,0,"'1
2,'3$1
4$3,5)%1
&(2,#)1

6$332,)%1

)+".()1
65)&65//1
)"##&.1

65)7&(65//1
8""(65//1

- -

I Many applications in information retrieval, document
summarization, and classification

Complexity+of+Inference+in+Latent+Dirichlet+Alloca6on+
David+Sontag,+Daniel+Roy+
(NYU,+Cambridge)+

W66+
Topic+models+are+powerful+tools+for+exploring+large+data+sets+and+for+making+
inferences+about+the+content+of+documents+

Documents+ Topics+
poli6cs+.0100+

president+.0095+
obama+.0090+

washington+.0085+
religion+.0060+

Almost+all+uses+of+topic+models+(e.g.,+for+unsupervised+learning,+informa6on+
retrieval,+classifica6on)+require+probabilis)c+inference:+

New+document+ What+is+this+document+about?+

Words+w1,+…,+wN+ ✓Distribu6on+of+topics+

�t =
�

p(w | z = t)
�

…+

religion+.0500+
hindu+.0092+

judiasm+.0080+
ethics+.0075+

buddhism+.0016+

sports+.0105+
baseball+.0100+
soccer+.0055+

basketball+.0050+
football+.0045+

…+ …+

weather+ .50+
finance+ .49+
sports+ .01+

I LDA is one of the simplest and most widely used topic
models
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Latent Dirichlet Allocation

I Document = random mixture over latent topics
I Topic = distribution over n-grams

Probabilistic model with 3 steps:
1. Choose ✓

i

⇠ Dirichlet(↵)

2. Choose �
k

⇠ Dirichlet(�)

3. For each word in document i :
I Choose a topic z

m

⇠ Multinomial(✓
i

)
I Choose a word w

im

⇠ Multinomial(�
i,k=z

m

)

where:
↵=parameter of Dirichlet prior on distribution of topics over docs.
✓

i

=topic distribution for document i

�=parameter of Dirichlet prior on distribution of words over topics
�

k

=word distribution for topic k
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Estimation
I Applications that aggregate by author or day outperform

tweet-level analyses (Hong and Davidson, 2010)
I K is fixed at 100 based on cross-validated model fit.
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I Text is parsed with scikit-learn in python
I Estimation: Collapsed Gibbs Sampler in C++ (Griffits and

Steyvers, 2004), ported to R by Grün and Hornik (2011)
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Validation

j.mp/lda-congress-demo
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Congruence

Are Members of Congress discussing the same set of issues as
their constituents?

Table : Contemporaneous Pearson Correlations in Topic Distribution

Dem Rep
Group Mcs MCs
Democratic Members of Congress 1.00 0.22
Republican Members of Congress 0.22 1.00
Informed Public 0.33 0.39
Republican Party Supporters 0.17 0.62
Democratic Party Supporters 0.58 0.33
Media 0.39 0.61
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Responsiveness

Do legislators influence the public? Does the public influence
legislators?

To explore causal relationships between topic distributions, we
use a Granger-causality framework (Granger, 1969):
I Regress proportion of tweets on topic k at time t by each

group on lagged proportions for all groups, using five lags.
I Do legislators’ tweets predict tweets by the public, controlling

for the media, and vice versa?
! Changes in tweets as proxies for changes in salience of

issues
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Results: Democratic legislators

Public Legislators0.09

<0.00

Media

0.01

0.25

0.09

0.04
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Results: Republican legislators

Public Legislators0.03

<0.00

Media

0.01

0.25

0.11

0.07
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Conclusions

1. Social media as variable
2. Social media as data

Future work / open questions:
I More complex generative models for tweets that exploit

platform features (Author-Topic; Dynamic; Hierarchical)
I Text- vs network-based estimates of political ideology
I Predicting latent probability to turn out to vote based on

tweet text, using voting registration records
I Multilingual topic modeling
I Detecting irony and sarcasm (Trump!)
I Identifying bots and spam with user and text features only
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Thanks!

website: pablobarbera.com

twitter: @p barbera

github: pablobarbera
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Backup slides (index)

Model with covariates
Model identification
Unequal representation
Comparative responsiveness
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Model with Covariates

Baseline model:

P(y
ij

= 1) = logit�1
⇣
↵

j

+ �
i

� �(✓
i

� �
j

)2
⌘

Model with geographic covariate:

P(y
ij

= 1) = logit�1
⇣
↵

j

+ �
i

� �(✓
i

� �
j

)2 + �s

ij

⌘

where s

ij

= 1 if user i and political actor j are located in the
same state, and s

ij

= 0 otherwise.

�̂ ⇡ 1.20 and �̂ ⇡ 0.90
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Model with Covariates
Comparing Parameter Estimates Across Different Model

Specifications

φj, Elites' Ideology Estimates θi, Users' Ideology Estimates
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Identifying restrictions

Indeterminacy Approach 1 Approach 2
Additive aliasing (1) Fix ↵0

j

= 0 or �0
i

= 0 Fix µ↵ = 0 or µ� = 0
Additive aliasing (2) Fix �0

j

= +1 or ✓0
i

= +1 Fix µ� = 0 or µ✓ = 0
Multiplicative aliasing Fix �00

j

= �1 or ✓00
i

= �1 Fix �� = 1 or �✓ = 1
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Application: Ideology of Media Outlets and Journalists
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mother Jones
New Yorker
MSNBC
Think Progress
Daily Kos

Slate
Al Jazeera
NPR News
The Atlantic
TIME

New York Times
FiveThirtyEight
Los Angeles Times
Salon

Huffington Post
Newsweek

ABC News
CBS News

U.S. News
CNN
Christian Science Monitor
CNBC
Washington Post
USA Today
Financial Times

The Economist
Reuters

Wall Street Journal
Forbes
Politico

The Hill
Washington Times

Fox News
Drudge Report
Real Clear Politics

Red State

−2 −1 0 1
Estimated Ideological Ideal Point

(Accounts Weighted by Number of Followers)
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Application: Ideology of Media Outlets and Journalists
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Application: Ideological Asymmetries in Pol. Comm.
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Application: Multidimensional Policy Spaces in Europe

P(y
ij

= 1) = logit

�1

 
↵

i

+ �
j

�
dX

k=1

�
d

(✓
ik

� �
jk

)2

!

Estimated ideological positions for 120 parties in 28 European countries
Left-Right Dimension Pro/Anti-European Union Dimension
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Barberá, Popa, & Schmitt (2015) “Analyzing the Common
Multidimensional Political Space for Voters, Parties, and Legislators in
Europe”, MPSA Conference
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Unequal representation

We also analyze whether correspondence between citizens
and legislators is higher for:
I Co-partisans (party supporters)
I Issues owned by each party (e.g. economy for Republicans;

social issues for Democrats)
I Constituents (vs general public)
I Informed public vs random sample of U.S. Twitter users
I Individuals with income above median
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Electoral Institutions and Political Representation

What institutional configurations foster better representation?

Theoretical expectations
Country Government Instit. Congr. Responsiv.
Germany Coalition Prop. High Low
Spain Single-party Prop. Medium Medium
UK Coalition Maj. Medium Medium
France Single-party Maj. Low High

Barberá & Bølstad (2015) “A Comparative Study of the Quality
of Political Representation Using Social Media Data”, EPSA
Conference Paper. Index
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Electoral Institutions and Political Representation
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