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Bayesian networks
Reminder of first lecture

A Bayesian network is specified by a directed acyclic graph
G = (V ,E ) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

Powerful framework for designing algorithms to perform probability
computations
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Bayesian networks have limitations

Recall that G is a perfect map for distribution p if I (G ) = I (p)

Theorem: Not every distribution has a perfect map as a DAG

Proof.

(By counterexample.) There is a distribution on 4 variables where the only
independencies are A ⊥ C | {B,D} and B ⊥ D | {A,C}. This cannot be
represented by any Bayesian network.

(a) (b)

Both (a) and (b) encode (A ⊥ C |B,D), but in both cases (B 6⊥ D|A,C ).
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Example

Let’s come up with an example of a distribution p satisfying
A ⊥ C | {B,D} and B ⊥ D | {A,C}
A=Alex’s hair color (red, green, blue)
B=Bob’s hair color
C=Catherine’s hair color
D=David’s hair color

Alex and Bob are friends, Bob and Catherine are friends, Catherine
and David are friends, David and Alex are friends

Friends never have the same hair color!
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Undirected graphical models

An alternative representation for joint distributions is as an undirected
graphical model

As in BNs, we have one node for each random variable

Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Like CPD’s, φc(xc) can be represented as a table, but it is not normalized

Also known as Markov random fields (MRFs) or Markov networks
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Undirected graphical models

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc), Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Simple example (potential function on each edge encourages the variables to take
the same value):

B

A C

10 1

1 10
A

B
0 1

0

1

φA,B(a, b) =

10 1

1 10
B

C
0 1

0

1

φB,C(b, c) = φA,C(a, c) =

10 1

1 10
A

C
0 1

0

1

p(a, b, c) =
1

Z
φA,B(a, b) · φB,C (b, c) · φA,C (a, c),

where

Z =
∑

â,b̂,ĉ∈{0,1}3

φA,B(â, b̂) · φB,C (b̂, ĉ) · φA,C (â, ĉ) = 2 · 1000 + 6 · 10 = 2060.
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Hair color example as a MRF

We now have an undirected graph:

The joint probability distribution is parameterized as

p(a, b, c , d) =
1

Z
φAB(a, b)φBC (b, c)φCD(c , d)φAD(a, d) φA(a)φB(b)φC (c)φD(d)

Pairwise potentials enforce that no friend has the same hair color:

φAB(a, b) = 0 if a = b, and 1 otherwise

Single-node potentials specify an affinity for a particular hair color, e.g.

φD(“red”) = 0.6, φD(“blue”) = 0.3, φD(“green”) = 0.1

The normalization Z makes the potentials scale invariant! Equivalent to

φD(“red”) = 6, φD(“blue”) = 3, φD(“green”) = 1
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Markov network structure implies conditional independencies

Let G be the undirected graph where we have one edge for every pair
of variables that appear together in a potential

Conditional independence is given by graph separation!

XA

XB

XC

XA ⊥ XC | XB if there is no path from a ∈ A to c ∈ C after removing
all variables in B
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Example

Returning to hair color example, its undirected graphical model is:

Since removing A and C leaves no path from D to B, we have
D ⊥ B | {A,C}
Similarly, since removing D and B leaves no path from A to C , we
have A ⊥ C | {D,B}
No other independencies implied by the graph
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Markov blanket

A set U is a Markov blanket of X if X /∈ U and if U is a minimal set
of nodes such that X ⊥ (X − {X} −U) | U

In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

X

In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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Proof of independence through separation

We will show that A ⊥ C | B for the following distribution:

BA C

p(a, b, c) =
1

Z
φAB(a, b)φBC (b, c)

First, we show that p(a | b) can be computed using only φAB(a, b):

p(a | b) =
p(a, b)

p(b)

=
1
Z

∑
ĉ φAB(a, b)φBC (b, ĉ)

1
Z

∑
â,ĉ φAB(â, b)φBC (b, ĉ)

=
φAB(a, b)

∑
ĉ φBC (b, ĉ)∑

â φAB(â, b)
∑

ĉ φBC (b, ĉ)
=

φAB(a, b)∑
â φAB(â, b)

.

More generally, the probability of a variable conditioned on its Markov
blanket depends only on potentials involving that node
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Proof of independence through separation

We will show that A ⊥ C | B for the following distribution:

BA C

p(a, b, c) =
1

Z
φAB(a, b)φBC (b, c)

Proof.

p(a, c | b) =
p(a, c, b)∑
â,ĉ p(â, b, ĉ)

=
φAB(a, b)φBC (b, c)∑
â,ĉ φAB(â, b)φBC (b, ĉ)

=
φAB(a, b)φBC (b, c)∑

â φAB(â, b)
∑

ĉ φBC (b, ĉ)

= p(a | b)p(c | b)

David Sontag (NYU) Inference and Representation Lecture 3, Sept. 22, 2015 12 / 14



Example: Ising model

Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem to
his student Ernst Ising

Mathematical model of ferromagnetism in statistical mechanics

The spin of an atom is biased by the spins of atoms nearby on the material:

=  +1

=  -1

Each atom Xi ∈ {−1,+1}, whose value is the direction of the atom spin

If a spin at position i is +1, what is the probability that the spin at position
j is also +1?

Are there phase transitions where spins go from “disorder” to “order”?
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Example: Ising model

Each atom Xi ∈ {−1,+1}, whose value is the direction of the atom spin

The spin of an atom is biased by the spins of atoms nearby on the material:

=  +1

=  -1

p(x1, · · · , xn) =
1

Z
exp

(∑
i<j

wi,jxixj −
∑
i

uixi
)

When wi,j > 0, nearby atoms encouraged to have the same spin (called
ferromagnetic), whereas wi,j < 0 encourages Xi 6= Xj

Node potentials exp(−uixi ) encode the bias of the individual atoms

Scaling the parameters makes the distribution more or less spiky
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