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Bayesian networks

Reminder of first lecture

o A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
© One node j € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)).
specifying the variable's probability conditioned on its parents’ values
@ Corresponds 1-1 with a particular factorization of the joint
distribution:
p(x1, ... xn) = H P(Xi | Xpai))
ievV
@ Powerful framework for designing algorithms to perform probability
computations
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Bayesian networks have limitations

@ Recall that G is a perfect map for distribution p if /(G) = I(p)

@ Theorem: Not every distribution has a perfect map as a DAG

(By counterexample.) There is a distribution on 4 variables where the only
independencies are A L C | {B,D} and B L D | {A, C}. This cannot be
represented by any Bayesian network.

(a) (b)
Both (a) and (b) encode (A L C|B, D), but in both cases (B £ DI|A, C). O
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@ Let's come up with an example of a distribution p satisfying
ALC|{B,D}and B LD|{A C}
e A=Alex’s hair color (red, green, blue)
B=Bob's hair color
C=Catherine's hair color
D=David's hair color

@ Alex and Bob are friends, Bob and Catherine are friends, Catherine
and David are friends, David and Alex are friends

@ Friends never have the same hair color!
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Undirected graphical models

@ An alternative representation for joint distributions is as an undirected
graphical model

@ As in BNs, we have one node for each random variable

@ Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

P(X1, - X)) = % I 6<(xc)

Z is the partition function and normalizes the distribution:

Z= Z Hﬁbc(ic)

K1y, Ry c€C

@ Like CPD’s, ¢c(x.) can be represented as a table, but it is not normalized

@ Also known as Markov random fields (MRFs) or Markov networks
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Undirected graphical models

p(X1, ..., Xn) = % H dc(xc), Z= Z H Pc(Re)

ceC K1y Xp cEC

Simple example (potential function on each edge encourages the variables to take
the same value):

B c
danla,b)= ¢ | o¢Bclc)=4 | daclac)=o0 1

e ol 10| 1 ol 10| 1
o—o bl O

p(a, b,c) = %¢A,B(3, b) - ¢B,c(b,c) - da,c(a,c),

where

Z= > ¢as(3b) ¢6.c(b &) pac(s &) =2-1000+6- 10 = 2060.
a,b,ec{0,1}3
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Hair color example as a MRF

@ We now have an undirected graph:

0;0

@ The joint probability distribution is parameterized as

p(a, b,c,d) = %¢AB(37 b)psc(b, c)pcp(c, d)pap(a, d) dpa(a)ps(b)dc(c)én(d)

@ Pairwise potentials enforce that no friend has the same hair color:
oag(a,b) =0if a=b, and 1 otherwise
@ Single-node potentials specify an affinity for a particular hair color, e.g.
¢p("red") =0.6, ¢p("blue”)=0.3, ¢p(“green”)=0.1
The normalization Z makes the potentials scale invariant! Equivalent to

¢p(“red") =6, ¢p("blue") =3, ¢p(“green”) =1
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Markov network structure implies conditional independencies

@ Let G be the undirected graph where we have one edge for every pair
of variables that appear together in a potential

o Conditional independence is given by graph separation!

Xp
Xa
Xc
@ Xp L Xc | Xg if there is no path from a € A to ¢ € C after removing
all variables in B
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@ Returning to hair color example, its undirected graphical model is:

0’0

@ Since removing A and C leaves no path from D to B, we have
D1 B|{A C}

@ Similarly, since removing D and B leaves no path from A to C, we
have A L C | {D, B}

@ No other independencies implied by the graph
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Markov blanket

o A set U is a Markov blanket of X if X ¢ U and if U is a minimal set
of nodes such that X L (¥ —{X} -U)|U

@ In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

@ In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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Proof of independence through separation

e We will show that A L C | B for the following distribution:

O——O©

p(a, b,c) = %quB(a, b)¢ec(b, c)

o First, we show that p(a | b) can be computed using only ¢ag(a, b):
plal b) = P2

2 2e da(a, b)oec(b, €)

2252 0a8(4, b)dsc(b, €)

__9aB(a b)Y d8c(b,E)  ¢as(a b)

25048(3,b) e dpc(b,€) 35 0a8(8,b)

@ More generally, the probability of a variable conditioned on its Markov
blanket depends only on potentials involving that node
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Proof of independence through separation

e We will show that A L C | B for the following distribution:

O——O©

p(a, b,c) = %quB(a, b)¢sc(b, c)

p(a; c, b) _ pag(a; b)psc(b, c)
Zé,é p(a, b, ¢) Zs,e ¢aB(3, b)psc(b, €)
da(a, b)dpc (b, c)
>_59a8(3,b) > ¢ dBc(b, €)
= p(a| b)p(c|b)
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Example: Ising model

@ Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem to
his student Ernst Ising

@ Mathematical model of ferromagnetism in statistical mechanics
@ The spin of an atom is biased by the spins of atoms nearby on the material:

magnetic moments

C
7
i
1
4
4
i
i
4

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ If a spin at position i is +1, what is the probability that the spin at position
j is also +17

@ Are there phase transitions where spins go from “disorder” to “order”?
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Example: Ising model

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ The spin of an atom is biased by the spins of atoms nearby on the material:

1
p(Xla e 7Xn) = ? exp (Z WI'JXI'XJ' - Z U,‘X,')

i<j i
@ When w;; > 0, nearby atoms encouraged to have the same spin (called
ferromagnetic), whereas w; ; < 0 encourages X; # X;

@ Node potentials exp(—u;x;) encode the bias of the individual atoms

@ Scaling the parameters makes the distribution more or less spiky
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