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ex·o·plan·et 
ˈeksōˌplanət/ 

noun.  a planet that orbits a star 
outside the solar system.
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How do we find & study exoplanets?
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the transit method
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that's not what most stars look like!
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everything is against us!



Fig. 3.— Calculation of the transit probability. Left.—Transits are visible by observers within the penumbra of the planet, a cone with
opening angleΘ with sinΘ = (R⋆+Rp)/r, where r is the instantaneous star-planet distance. Right.—Close-up showing the penumbra
(thick lines) as well as the antumbra (thin lines) within which the transits are full, as opposed to grazing.

are tangent at four contact times tI–tIV, illustrated in Fig-
ure 2. (In a grazing eclipse, second and third contact do
not occur.) The total duration is Ttot = tIV − tI, the
full duration is Tfull = tIII − tII, the ingress duration is
τing = tII − tI, and the egress duration is τegr = tIV − tIII.
Given a set of orbital parameters, the various eclipse du-

rations can be calculated by setting equation (5) equal to
R⋆ ± Rp to find the true anomaly at the times of contact,
and then integrating equation (44) of the chapter by Murray
and Correia, e.g.,

tIII − tII =
P

2π
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fII
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df. (13)

For a circular orbit, some useful results are
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(15)
For eccentric orbits, good approximations are obtained by
multiplying equations (14-15) by

Ẋ(fc) [e = 0]

Ẋ(fc)
=

√
1− e2

1± e sinω
, (16)

a dimensionless factor to account for the altered speed of
the planet at conjunction. Here, “+” refers to transits and
“−” to occultations. One must also compute b using the
eccentricity-dependent equations (7-8).
For an eccentric orbit, τing and τegr are generally unequal

because the projected speed of the planet varies between

ingress and egress. In practice the difference is slight; to
leading order in R⋆/a and e,

τe − τi
τe + τi

∼ e cosω

(

R⋆

a

)3
(

1− b2
)3/2

, (17)

which is <10−2 e for a close-in planet with R⋆/a = 0.2,
and even smaller for more distant planets. For this reason
we will use a single symbol τ to represent either the ingress
or egress duration. Another important timescale is T ≡
Ttot − τ , the interval between the halfway points of ingress
and egress (sometimes referred to as contact times 1.5 and
3.5).
In the limits e → 0, Rp ≪ R⋆ ≪ a, and b ≪ 1 − k

(which excludes near-grazing events), the results are greatly
simplified:

T ≈ T0

√

1− b2, τ ≈
Tok√
1− b2

, (18)

where T0 is the characteristic time scale

T0 ≡
R⋆P

πa
≈ 13 hr

(

P

1 yr

)1/3 ( ρ⋆
ρ⊙

)−1/3

. (19)

For eccentric orbits, the additional factor given by equa-
tion (16) should be applied. Note that in deriving equa-
tion (19), we used Kepler’s third law and the approximation
Mp ≪ M⋆ to rewrite the expression in terms of the stel-
lar mean density ρ⋆. This is a hint that eclipse observations
give a direct measure of ρ⋆, a point that is made more ex-
plicit in Section 3.1.

2.4 Loss of light during eclipses

The combined flux F (t) of a planet and star is plotted
in Figure 1. During a transit, the flux drops because the

4
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need to look at the right place
at the right time

and measure 
extremely precise 

photometry
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Figure 16. Kepler-31 phase curves, in the style of figure 3. For
the small inner candidate KOI-952.05, the phase is with respect to
a linear ephemeris, the data in that panel are binned together in
phase. The vertical scale of that panel is 20% of the other panels.

KIC 9347893, 9.4 arcsec to the west. Moreover, the cen-
troid information has all transits coincident within 1σ
of the target. The transits cannot be hosted by a back-
ground star further than Rc = (0.3, 0.5, 0.8) arcsec in
the case of Kepler-31b, Kepler-31c, KOI-935.03 respec-
tively. For KOI-935.04, the transits are too shallow for a
constraining centroid analysis.
Again pursuing probability calculations as above, the

chance of a star unassociated with the target being the
actual host is only ∼ 3 × 10−4. The probability of a
physical companion hosting the planets is ∼ 0.04.

3.2.4. Kepler-32

A J-band image from UKIRT shows the nearest star to
be KID 9787232, ∼ 6.6” to the west, resulting in rather
low contamination.
The centroids during transit for Kepler-32b and

Kepler-32c differ from those out-of-transit by only ∼ 2σ,
roughly consistent with measurement uncertainties. The
∼ 3σ radii of confusion Rc are 0.5” for Kepler-32b and
0.8” for Kepler-32c. For KOI-952.03, .04, and .05, the
transits are too shallow for a constraining centroid anal-
ysis.
The host star is an M-dwarf and therefore of special in-

terest. The Kepler Follow-up Program has obtained two
spectra of Kepler-32: one spectrum from McDonald Ob-
servatory and one from Keck Observatory. Both spectra
are weak due to the faintness of the star (Kp=15.8). The
cross correlation function between the observed spectra
and available models is maximized for temperatures of
∼ 3900 K and ∼ 3600 K, respectively. However, the
atmospheric parameters are not well determined, as the
star is cooler than the library of atmosphere models avail-
able. Both spectra are consistent with the KIC clas-
sification as a cool dwarf (Teff = 3911, log g = 4.64,
[M/H]=0.172). We conservatively adopt these values of
Teff and log g with uncertainties of 200K and 0.3 dex and
a [M/H] of 0± 0.4 based on the KIC (Brown et al. 2011).
By comparing to the Yonsei-Yale isochrones, we derive
values for the stellar mass (0.58 ± 0.05M⊙) and radius
(0.53± 0.04R⊙) that are slightly larger than those from
the KIC. We estimate a luminosity of 0.06 ± 0.02 L⊙

and an age of ≤ 9Gyr.
Muirhead et al. (2011) have also obtained high-

resolution IR spectrum of Kepler-32=KOI-952, finding
a stellar Teff = 3726+73

−67, [Fe/H]= 0.04+0.08
−0.10. Interpret-

ing their data via Padova models (Girardi et al. 2002),
they inferred a considerably less massive and smaller star.
We encourage further detailed analyses of the host star
properties, as these have considerable uncertainties that
directly affect the sizes and masses for the planets.
The probability of a star unassociated with the target

being the actual host is only ∼ 3 × 10−3. The probabil-
ity of a physical companion hosting the planets is ∼ 0.34.
This latter number is relatively large in this case because
all the transit depths are small, so they could in principle
be much larger planets hosted by a star which is dramat-
ically diluted. This opens up the possibilities for a very
large range of companions (down to masses as low as
∼ 0.1M⊙) that could host one or more of these objects,
as long as transits near apocenter are invoked to match
the durations (fig. 1).

4. PLANETARY MASS LIMITS

4.1. Dynamical Stability Analysis

Many of the systems in this paper and its compan-
ions (Papers II and III) are not completely solvable
with present data; e.g., the gravitational interactions
of the component planets do not yield unique solutions
for their masses. Rather, there exists degeneracy be-
tween the masses and eccentricities, as was the case for
Kepler-9 before radial velocity constraints were applied
(Holman et al. 2010). However, we constrain them to
be in the planetary regime because the pairs of plan-
ets all have small period ratios. In two-planet systems,
a sharp boundary exists between provably stable orbits
(Marchal & Bozis 1982) and orbits that are allowed to
cross, according to energy and angular momentum con-
servation. This boundary is when the separation of the
planetary semi-major axes, aout − ain, exceeds a certain
number (2

√
3 ≈ 3.46, for coplanar, circular orbits) of

mutual Hill spheres,

rH =
ain + aout

2

(Min +Mout

3M⋆

)1/3
. (5)

When the separation is only slightly closer than this,
numerical integrations generally show the planets chaoti-
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that looks pretty good…
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Can we find planets using K2?



Anatomy of a transit signal

+ + + =

planet star space craft detector signal



Designing the probabilistic model
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Designing the probabilistic model

 planet:

 star:


 noise:

 space craft:

physics and geometry 
continuous in time → GP 
CCD, photon noise → Poisson  
?? 

representation:



The planet orbit model
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The planet orbit model
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L172 TRANSIT LIGHT CURVES Vol. 580

Fig. 1.—(a) Geometry of limb darkening. The star is seen edge-on, with the observer off the top of the page. The star has radius , and v is defined as ther∗
angle between the observer and the normal to the stellar surface, while . (b) Transit geometry from the perspective of the observer.m p cos v

3. NONLINEAR LIMB DARKENING

Limb darkening causes a star to be more centrally peaked in brightness compared to a uniform source. This leads to more
significant dimming during eclipse and creates curvature in the trough. Thus, including limb darkening is important for computing
accurate eclipse light curves. Claret (2000) proposed a nonlinear limb-darkening law that fits well a wide range of stellar models
and observational bands, , where , is the normalized radial coor-n/2 2 1/24I(r) p 1! ! c (1! m ) m p cos v p (1! r ) 0 ≤ r ≤ 1np1 n

dinate on the disk of the star and is the specific intensity as a function of r or m with . Figure 1a shows the geometryI(r) I(0) p 1
of lensing and the definition of m. The light curve in the limb-darkened case is given by

1 1!1 e 2d[F (p/r, z/r)r ]
F(p, z) p dr 2rI(r) dr I(r) , (2)[ ]" " dr0 0

where is the light curve of a uniform source defined in § 2.eF (p, z)
In what follows, . For convenience, we define , , and2 2 4c { 1! c ! c ! c ! c a { (z! p) b { (z" p) Q p ! c (n"np00 1 2 3 4 n

. We partition the parameter space in z and p into the regions and cases listed in Table 1. Next we describe each of these cases!14)
in turn.
In case 1, the star is unobscured, so . In case 2, the planet disk lies on the limb of the star but does not cover the centerF p 1

of the stellar disk. We define

(n"6)/4 2 2(1! a) n" 8 1 z ! p 1 1 n" 10 a! 1 1! a 1 1 n" 10 1! a
N p B , F , 1, , ; , ! F , ; ; . (3)1 2 1( ) ( ) ( )[ ]1/2(b! a) 4 2 a 2 2 4 a b! a 2 2 4 b! a

In the above equations, is the beta function, , , c; x, y) is Appell’s hypergeometric function of two variables, andB(a, b) F (a, b b1 1 2
is the Gauss hypergeometric function. The relative flux is . This case covers!1 !14F (a, b; c; x) F p 1! (2pQ) ! Nc (n" 4)np02 1 n

the ingress/egress where the light curve is steepest. For cases 3 and 4, the planet’s disk lies entirely inside the stellar disk but
does not cover the stellar center. We define

2 2z ! p 1 n" 4 b! a a! b n" 4 1 b! a(n"4)/4M p (1! a) F , ! , 1, 1; , ! F ! , ; 1; (4)1 2 1( ) ( )[ ]a 2 4 1! a a 4 2 1! a

and . Then the relative flux is given by . This case2 2 2 !1 2 !13L p p (1! p /2! z ) F p 1! (4Q) [c p " 2 ! Mc (n" 4) " c L]np10 n 4
requires the planet to be less than half of the size of the star. In case 5, the edge of the planet touches the center of the stellar
disk and the planet lies entirely within the stellar disk. The relative flux is , !1 1!1 !14F p " (2Q) ! c (n" 4) F [ (n" 4)/4,np0 n 2 12 2

. For case 6, the planet’s diameter equals the star’s radius and the edge of the planet’s disk touches both the stellar center21; 4p ]
and the limb of the star. The relative flux is

41 1 c 3 n nnF p " G " G 2" . (5)! Z( ) ( )#2 n" 4 2 4 4np02 pQ

Reference Mandel & Agol (2002); arXiv:astro-ph/0210099

The planet transit model
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disk and the planet lies entirely within the stellar disk. The relative flux is , !1 1!1 !14F p " (2Q) ! c (n" 4) F [ (n" 4)/4,np0 n 2 12 2

. For case 6, the planet’s diameter equals the star’s radius and the edge of the planet’s disk touches both the stellar center21; 4p ]
and the limb of the star. The relative flux is

41 1 c 3 n nnF p " G " G 2" . (5)! Z( ) ( )#2 n" 4 2 4 4np02 pQ

Reference Mandel & Agol (2002); arXiv:astro-ph/0210099

The planet transit model
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Designing the probabilistic model
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 noise:

 space craft:

physics and geometry 
continuous in time → GP 
CCD, photon noise → Poisson  
?? 

representation:



The stellar variability model



The stellar variability model

y ⇠ N (f✓(t), K↵(t))
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The stellar variability model



Designing the probabilistic model

 planet:

 star:


 noise:

 space craft:

physics and geometry 
continuous in time → GP 
CCD, photon noise → Poisson  
?? 

representation:
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The noise model



Designing the probabilistic model
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Designing the probabilistic model
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Designing the probabilistic model

simple space craft assumption:
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Designing the probabilistic model

 planet:

 star:


 noise:

 space craft:

physics and geometry 
continuous in time → GP 
CCD, photon noise → Poisson  
data-driven linear model

representation:
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Can we find planets using K2?



Yes.



stars 
days of data 
planet candidates 
confirmed planets

21,703 
80 
36 
18

K2 Campaign 1 exoplanet discoveries

Published: 
Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715) 

Montet, Morton, Foreman-Mackey, et al. (arXiv:1503.07866) 
Schölkopf, Hogg, Wang, Foreman-Mackey, et al. (arXiv:1505.03036)



XKCD/1555



XKCD/1555



Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715) 
Montet, Morton, Foreman-Mackey, et al. (arXiv:1503.07866) 

Schölkopf, Hogg, Wang, Foreman-Mackey, et al. (arXiv:1505.03036)

Probabilistic modeling—combining 
physical and data-driven models—enables 
the discovery of new planets using open 

data and open source software


