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Today’s lecture

Markov random fields
1 Factor graphs
2 Bayesian networks ⇒ Markov random fields (moralization)

Exact inference
1 Worst-case complexity of probabilistic inference
2 Elimination algorithm
3 Running-time analysis of elimination algorithm (treewidth)
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Undirected graphical models

An alternative representation for joint distributions is as an undirected
graphical model

As in BNs, we have one node for each random variable

Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Like CPD’s, φc(xc) can be represented as a table, but it is not normalized

Also known as Markov random fields (MRFs) or Markov networks
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Higher-order potentials

The examples so far have all been pairwise MRFs, involving only
node potentials φi (Xi ) and pairwise potentials φi ,j(Xi ,Xj)

Often we need higher-order potentials, e.g.

φ(x , y , z) = 1[x + y + z ≥ 1],

where X ,Y ,Z are binary, enforcing that at least one of the variables
takes the value 1

Although Markov networks are useful for understanding
independencies, they hide much of the distribution’s structure:

A

C

B

D

Does this have pairwise potentials, or one potential for all 4 variables?
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Factor graphs

G does not reveal the structure of the distribution: maximum cliques vs.
subsets of them

A factor graph is a bipartite undirected graph with variable nodes and factor
nodes. Edges are only between the variable nodes and the factor nodes

Each factor node is associated with a single potential, whose scope is the set
of variables that are neighbors in the factor graph

A

C

B

D

A

C

B

D

A

C

B

D

Markov network

Factor graphs

The distribution is same as the MRF – this is just a different data structure

David Sontag (NYU) Inference and Representation Lecture 4, Sept. 29, 2015 5 / 41



Example: Low-density parity-check codes

Error correcting codes for transmitting a message over a noisy channel
(invented by Galleger in the 1960’s, then re-discovered in 1996)

Y2Y1 Y3 Y4 Y5 Y6

fA fB fC

f1 f2 f3 f4 f5 f6

X2X1 X3 X4 X5 X6

Each of the top row factors enforce that its variables have even parity:

fA(Y1,Y2,Y3,Y4) = 1 if Y1 ⊗ Y2 ⊗ Y3 ⊗ Y4 = 0, and 0 otherwise

Thus, the only assignments Y with non-zero probability are the following
(called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111

fi (Yi ,Xi ) = p(Xi | Yi ), the likelihood of a bit flip according to noise model
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Example: Low-density parity-check codes

Y2Y1 Y3 Y4 Y5 Y6

fA fB fC

f1 f2 f3 f4 f5 f6

X2X1 X3 X4 X5 X6

The decoding problem for LDPCs is to find

argmaxyp(y | x)

This is called the maximum a posteriori (MAP) assignment

Since Z and p(x) are constants with respect to the choice of y, can
equivalently solve (taking the log of p(y, x)):

argmaxy

∑
c∈C

θc(yc , xc),

where θc(xc) = log φc(yc , xc)

This is a discrete optimization problem!

David Sontag (NYU) Inference and Representation Lecture 4, Sept. 29, 2015 7 / 41



Converting BNs to Markov networks

What is the equivalent Markov network for a hidden Markov model?

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Many inference algorithms are more conveniently given for undirected
models – this shows how they can be applied to Bayesian networks
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Moralization of Bayesian networks

Procedure for converting a Bayesian network into a Markov network

The moral graph M[G ] of a BN G = (V ,E ) is an undirected graph over V
that contains an undirected edge between Xi and Xj if

1 there is a directed edge between them (in either direction)
2 Xi and Xj are both parents of the same node

A

C

B

D

A

C

B

D

Moralization

(term historically arose from the idea of “marrying the parents” of the node)

The addition of the moralizing edges leads to the loss of some independence
information, e.g., A→ C ← B, where A ⊥ B is lost
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Converting BNs to Markov networks

1 Moralize the directed graph to obtain the undirected graphical model:

A

C

B

D

A

C

B

D

Moralization

2 Introduce one potential function for each CPD:

φi (xi , xpa(i)) = p(xi | xpa(i))

So, converting a hidden Markov model to a Markov network is simple:

For variables having > 1 parent, factor graph notation is useful
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Probabilistic inference

Today we consider exact inference in graphical models

In particular, we focus on conditional probability queries,

p(Y|E = e) =
p(Y, e)

p(e)

(e.g., the probability of a patient having a disease given some observed
symptoms)

Let W = X − Y − E be the random variables that are neither the query nor
the evidence. Each of these joint distributions can be computed by
marginalizing over the other variables:

p(Y, e) =
∑

w

p(Y, e,w), p(e) =
∑

y

p(y, e)

Naively marginalizing over all unobserved variables requires an exponential
number of computations

Does there exist a more efficient algorithm?
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Computational complexity of probabilistic inference

Here we show that, unless P=NP, there does not exist a more efficient
algorithm

We show this by reducing 3-SAT, which is NP-hard, to probabilistic
inference in Bayesian networks

3-SAT asks about the satisfiability of a logical formula defined on n literals
Q1, . . . ,Qn, e.g.

(¬Q3 ∨ ¬Q2 ∨ Q3) ∧ (Q2 ∨ ¬Q4 ∨ ¬Q5) · · ·

Each of the disjunction terms is called a clause, e.g.

C1(q1, q2, q3) = ¬q3 ∨ ¬q2 ∨ q3

In 3-SAT, each clause is defined on at most 3 literals.

Our reduction also proves that inference in Markov networks is NP-hard
(why?)
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Reducing satisfiability to MAP inference

Input: 3-SAT formula with n literals Q1, . . .Qn and m clauses C1, . . . ,Cm

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

One variable Qi ∈ {0, 1} for each literal, p(Qi = 1) = 0.5.

One variable Ci ∈ {0, 1} for each clause, whose parents are the literals used
in the clause. Ci = 1 if the clause is satisfied, and 0 otherwise:

p(Ci = 1 | qpa(i)) = 1[Ci (qpa(i))]

Variable X which is 1 if all clauses satisfied, and 0 otherwise:

p(Ai = 1 | pa(Ai )) = 1[pa(Ai ) = 1], for i = 1, . . . ,m − 2

p(X = 1 | am−2, cm) = 1[am−2 = 1, cm = 1]
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Reducing satisfiability to MAP inference

Input: 3-SAT formula with n literals Q1, . . .Qn and m clauses C1, . . . ,Cm

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

p(q, c, a,X = 1) = 0 for any assignment q which does not satisfy all clauses

p(Q = q,C = 1,A = 1,X = 1) = 1
2n for any satisfying assignment q

Thus, we can find a satisfying assignment (whenever one exists) by
constructing this BN and finding the maximum a posteriori (MAP)
assignment:

argmax
q,c,a

p(Q = q,C = c,A = a | X = 1)

This proves that MAP inference in Bayesian networks and MRFs is NP-hard
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Reducing satisfiability to marginal inference

Input: 3-SAT formula with n literals Q1, . . .Qn and m clauses C1, . . . ,Cm

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

p(X = 1) =
∑

q,c,a p(Q = q,C = c,A = a,X = 1) is equal to the number

of satisfying assignments times 1
2n

Thus, p(X = 1) > 0 if and only if the formula has a satisfying assignment

This shows that marginal inference is also NP-hard
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Probabilistic inference in practice

NP-hardness simply says that there exist difficult inference problems

Real-world inference problems are not necessarily as hard as these worst-case
instances

The reduction from SAT created a very complex Bayesian network:

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

Some graphs are easy to do inference in! For example, inference in hidden
Markov models

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

and other tree-structured graphs can be performed in linear time
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Variable elimination (VE)

Exact algorithm for probabilistic inference in any graphical model

Running time will depend on the graph structure

Uses dynamic programming to circumvent enumerating all
assignments

First we introduce the concept for computing marginal probabilities,
p(Xi ), in Bayesian networks

After this, we will generalize to MRFs and conditional queries
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Basic idea

Suppose we have a simple chain, A→ B → C → D, and we want to
compute p(D)

p(D) is a set of values, {p(D = d), d ∈ Val(D)}. Algorithm
computes sets of values at a time – an entire distribution

By the chain rule and conditional independence, the joint distribution
factors as

p(A,B,C ,D) = p(A)p(B | A)p(C | B)p(D | C )

In order to compute p(D), we have to marginalize over A,B,C :

p(D) =
∑
a,b,c

p(A = a,B = b,C = c ,D)

David Sontag (NYU) Inference and Representation Lecture 4, Sept. 29, 2015 18 / 41



Let’s be a bit more explicit...

There is structure to the summation, e.g., repeated P(c1|b1)P(d1|c1)

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

David Sontag (NYU) Inference and Representation Lecture 4, Sept. 29, 2015 19 / 41



Let’s be a bit more explicit...

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

and
P(a1)P(b2|a1) + P(a2)P(b2|a2)

Then, we get

We define τ1 : Val(B)→ <, τ1(bi ) = P(a1)P(bi |a1) + P(a2)P(bi |a2)

David Sontag (NYU) Inference and Representation Lecture 4, Sept. 29, 2015 20 / 41



Let’s be a bit more explicit...

We now have

We can once more reverse the order of the product and the sum and get

There are still other repeated computations!
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Let’s be a bit more explicit...

We define τ2 : Val(C )→ <, with

τ2(c1) = τ1(b1)P(c1|b1) + τ1(b2)P(c1|b2)

τ2(c2) = τ1(b1)P(c2|b1) + τ1(b2)P(c2|b2)

Now we can compute the marginal p(D) as
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What did we just do?

Our goal was to compute

p(D) =
∑
a,b,c

p(a, b, c ,D) =
∑
a,b,c

p(a)p(b | a)p(c | b)p(D | c)

=
∑
c

∑
b

∑
a

p(D | c)p(c | b)p(b | a)p(a)

We can push the summations inside to obtain:

p(D) =
∑
c

p(D | c)
∑
b

p(c | b)
∑
a

p(b | a)p(a)︸ ︷︷ ︸
ψ1(a,b)︸ ︷︷ ︸
τ1(b)

Let’s call ψ1(A,B) = P(A)P(B|A). Then, τ1(B) =
∑

a ψ1(a,B)

Similarly, let ψ2(B,C ) = τ1(B)P(C |B). Then, τ2(C ) =
∑

b ψ1(b,C )

This procedure is dynamic programming: computation is inside out instead
of outside in

David Sontag (NYU) Inference and Representation Lecture 4, Sept. 29, 2015 23 / 41



Inference in a chain

Generalizing the previous example, suppose we have a chain
X1 → X2 → · · · → Xn where each variable has k states

In Problem Set 1 (question 2), you gave an algorithm to compute p(Xi ), for
k = 2

For i = 1 up to n − 1, compute (and cache)

p(Xi+1) =
∑
xi

p(Xi+1 | xi )p(xi )

Each update takes k2 time (why?)

The total running time is O(nk2)

In comparison, naively marginalizing over all latent variables has complexity
O(kn)

We did inference over the joint without ever explicitly constructing it!
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Summary so far

Worst-case analysis says that marginal inference is NP-hard

In practice, due to the structure of the Bayesian network, we can cache
computations that are otherwise computed exponentially many times

This depends on our having a good variable elimination ordering
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Sum-product inference task

We want to give an algorithm to compute p(Y) for BNs and MRFs

This can be reduced to the following sum-product inference task:

Compute τ(y) =
∑

z

∏
φ∈Φ

φ(zScope[φ]∩Z, yScope[φ]∩Y) ∀y,

where Φ is a set of factors or potentials

For a BN, Φ is given by the conditional probability distributions for all
variables,

Φ = {φXi}ni=1 = {p(Xi | XPa(Xi ))}
n
i=1,

and where we sum over the set Z = X − Y

For Markov networks, the factors Φ correspond to the set of potentials
which we earlier called C

Sum-product returns an unnormalized distribution, so we divide by∑
y τ(y)
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Factor marginalization

Let φ(X,Y ) be a factor where X is a set of variables and Y /∈ X

Factor marginalization of φ over Y (also called “summing out Y in φ”)
gives a new factor:

τ(X) =
∑
Y

φ(X,Y )

For example,
a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

b1

b1

b2

b2

b1

b1

b2

b2

b1

b1

b2

b2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

0.25

0.35

0.08

0.16

0.05

0.07

  0

  0

0.15

0.21

0.09

0.18

a1

a1

a2

a2

a3

a3

c1

c2

c1

c2

c1

c2

0.33

0.51

0.05

0.07

0.24

0.39
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Sum-product variable elimination

Order the variables Z (called the elimination ordering)

Iteratively marginalize out variable Zi , one at a time

For each i ,

1 Multiply all factors that have Zi in their scope, generating a new
product factor

2 Marginalize this product factor over Zi , generating a smaller factor
3 Remove the old factors from the set of all factors, and add the new one
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Example

What is p(Job)? Joint distribution factorizes as:

p(C ,D, I ,G , S , L,H, J) = p(C)p(D|C)p(I )p(G |D, I )p(L|G)P(S |I )P(J|S , L)p(H|J,G)

with factors

Φ = {φC (C), φD(C ,D), φI (I ), φG (G ,D, I ), φL(L,G),

φS(S , I ), φJ(J, S , L), φH(H, J,G)}

Let’s do variable elimination with ordering {C ,D, I ,H,G ,S , L} on the board!
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Elimination ordering

We can pick any order we want, but some orderings introduce factors with
much larger scope

Alternative ordering...
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How to introduce evidence?

Recall that our original goal was to answer conditional probability queries,

p(Y|E = e) =
p(Y, e)

p(e)

Apply variable elimination algorithm to the task of computing P(Y, e)

Replace each factor φ ∈ Φ that has E ∩ Scope[φ] 6= ∅ with

φ′(xScope[φ]−E) = φ(xScope[φ]−E, eE∩Scope[φ])

Then, eliminate the variables in X − Y − E. The returned factor φ∗(Y) is
p(Y, e)

To obtain the conditional p(Y | e), normalize the resulting product of
factors – the normalization constant is p(e)
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Running time of variable elimination

Let n be the number of variables, and m the number of initial factors

At each step, we pick a variable Xi and multiply all factors involving Xi ,
resulting in a single factor ψi

Let Ni be the number of variables in the factor ψi , and let Nmax = maxi Ni

The running time of VE is then O(mkNmax ), where k = |Val(X )|. Why?

The primary concern is that Nmax can potentially be as large as n
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Running time in graph-theoretic concepts

Let’s try to analyze the complexity in terms of the graph structure

GΦ is the undirected graph with one node per variable, where there is an
edge (Xi ,Xj) if these appear together in the scope of some factor φ

Ignoring evidence, this is either the original MRF (for sum-product VE on
MRFs) or the moralized Bayesian network:
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Elimination as graph transformation

When a variable X is eliminated,

We create a single factor ψ that contains X and all of the variables Y with
which it appears in factors

We eliminate X from ψ, replacing it with a new factor τ that contains all of
the variables Y, but not X . Let’s call the new set of factors ΦX

How does this modify the graph, going from GΦ to GΦX
?

Constructing ψ generates edges between all of the variables Y ∈ Y

Some of these edges were already in GΦ, some are new

The new edges are called fill edges

The step of removing X from Φ to construct ΦX removes X and all its
incident edges from the graph
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Example

(Graph) (Elim. C )

(Elim. D) (Elim. I )
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Induced graph

We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination

We call this the induced graph IΦ,≺, where ≺ is the elimination ordering
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Example

(Induced graph) (Maximal Cliques)
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Properties of the induced graph

Theorem: Let IΦ,≺ be the induced graph for a set of factors Φ and
ordering ≺, then

1 Every factor generated during VE has a scope that is a clique in IΦ,≺
2 Every maximal clique in IΦ,≺ is the scope of some intermediate factor

in the computation

(see Koller & Friedman for proof)

Thus, Nmax is equal to the size of the largest clique in IΦ,≺

The running time, O(mkNmax ), is exponential in the size of the largest clique
of the induced graph
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Induced width

The width of an induced graph is #nodes in largest clique - 1

We define the induced width wG,≺ to be the width of the graph IG,≺
induced by applying VE to G using ordering ≺

The treewidth, or “minimal induced width” of graph G is

w∗G = min
≺

wG,≺

The treewidth provides a bound on the best running time achievable by VE
on a distribution that factorizes over G: O(mkw∗G+1),

Unfortunately, finding the best elimination ordering (equivalently, computing
the treewidth) for a graph is NP-hard

In practice, heuristics are used to find a good elimination ordering
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Choosing an elimination ordering

Set of possible heuristics:

Min-fill: the cost of a vertex is the number of edges that need to be added
to the graph due to its elimination.

Weighted-Min-Fill: the cost of a vertex is the sum of weights of the edges
that need to be added to the graph due to its elimination. Weight of an
edge is the product of weights of its constituent vertices.

Min-neighbors: The cost of a vertex is the number of neighbors it has in
the current graph.

Min-weight: the cost of a vertex is the product of weights (domain
cardinality) of its neighbors.

Which one better?

None of these criteria is better than others.

Often will try several.
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