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Approximate marginal inference

e Given the joint p(xi,...,x,) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x; | €)?

@® We showed in Lecture 4 that doing this exactly is NP-hard

o Nearly all approximate inference algorithms are either:

© Monte-carlo methods (e.g., Gibbs sampling, likelihood
reweighting, MCMC)
@ Variational algorithms (e.g., mean-field, loopy belief propagation)
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Generating samples from a Bayesian network

Algorithm 12.1 Forward Sampling in a Bayesian network
Procedure Forward-Sample (
B I/ Bayesian network over X’

)
Let X1,...,X, be a topological ordering of X’
fori=1,...,n
u; +— a:<PaX1.> /I Assignment to Pax, in z1,..., 21
Sample xz; from P(X; | u;)
return (z1,...,%,)

Ol B~ W N =

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)
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Monte-Carlo algorithms

e Given a joint distribution p(x, ..., X,), how do we compute
marginals?
plX1 =x1] = Explf(x)], where f(x) = 1[X; = xq]

= > p()f(x).

@ Rather than explicitly enumerating all assignments, consider the
following Monte-Carlo estimate of the expectation:

xt ~ p(x)
X~ p(x)
M~ p(x)

o Then, our estimate is E,[f(x)] = . Zrl\:ﬂ f(x™). How good is it?
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Monte-Carlo algorithms

o Let D = {x!,...,xM}. Since D was drawn randomly from p(x), the
estimate is itself a random variable

@ The estimate is unbiased because

Exl,.l.,xMNp(x)[é[f(X)]} = Exl,.l.,xwa(x)[A]_ﬂﬁf(xm)}

- MZEX’"NP [ )}

= x~p(x)[f( )]

@ How quickly does the estimate converge to the true expectation?
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Law of large numbers

@ There are two general results we can use, depending on whether we care
about additive or multiplicative error

@ Hoeffding bound says that:

Prpp(x) [Ep[f(x)] — e < Ep[f(x)] < E,[f(x)] + 6] > 1 e—2Mé

@ Chernoff bound says that (assuming f(x) € [0, 1]):

N

Prppie) | Bl (I~ €) < Eplf(x)] < EF(I(1+ )] > 12 57610

@ Estimating single-variable marginals for a BN is easy: just forward sample!
® What about computing conditional queries such as p(X = x | E = e)?

@ Computing denominator of p(X = x, E = e)/p(E = e) needs Q(1/p(E = e))
samples, by Chernoff bound.
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“Normalized” Importance Sampling

o If we could instead directly sample from p(X | E = e), we would be in
business — but this is hard!

@ For the same reason, sampling from an undirected graphical model
p(x) = %HCEC ®c(xc) — even without evidence — is hard, because we
don't know Z

@ Suppose we instead had a simpler-to-sample-from distribution g(x),
called the “proposal distribution”

o Let p(x) be an unnormalized version of the distribution, e.g.

p(x) = p(x,E=-e) (BN with evidence)
px) = [ écx) (MRF)

ceC

Note that we can efficiently evaluate p(x) for any x
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“Normalized” Importance Sampling
- xM~ g(x)):
)

o Consider the following estimate (now using x?, .
3 Some F(XT)W(x™) (x
M Sm= ,  where w(x) = )
X

Eolf(x)] =
bl ] = M

"Oz

Q
—

@ This is not an unbiased estimate! E.g., for M = 1, we have
f(x!)w(x!)
| = Bl

Eaatd | 1)
#  Exop[f(¥)]-

Euyreat) | EnlF(0)]] =

8 /19

@ However, the estimate is asymptotically correct (i.e., as M — o0)
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“Normalized” Importance Sampling
o Consider the following estimate (now using x!,...xM~ g(x)):
_B(x)

1 X m
MZ 1 () (x ), where w(x) %)

Ep[f(x)] =
% Zm:l ( )
(x)Z, the expectation of the numerator is

o Letting p(x) =

1 M
Ep-q(| 77 2 F(X")

M
Z xm~q(x)[f )W(X )]

m=1
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“Normalized” Importance Sampling

o Consider the following estimate (now using x?, ... xM~ g(x)):

= X —%Z f(x) (x™) wereﬁ/x—@
Eplf (] = MRS TS where @) = £

o Letting p(x) = p(x)Z, the expectation of the numerator is ZE,[f(x)].
@ The expectation of the denominator is Z!

M

1 1 &
Epato 7 22 M| = 5 3 oo (<7
M ~
- M Z:: Z [p(x }
= mzl\:: Z B(x
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Likelihood weighting

@ What should we use for g(x)? For a Bayesian network, we can sample
sample from the latent variables, keeping the evidence fixed

Algorithm 12.2 Likelihood-weighted particle generation
Procedure LW-Sample (
B, I/ Bayesian network over X’
Z =z Il Event in the network
)

1 Let X1,..., X, be a topological ordering of X’

2 w1

3 fori=1,....n

4 wu; < x(Pay,) /I Assignment to Pax, in z1,...,2i—1

5 if X; & Z then

6 Sample z; from P(X; | u;)

7 else

8 z; < z(X;) Il Assignment to X; in z

9 w <+ w-P(z; | w;) /I Multiply weight by probability of desired value
10 return (z1,...,2,),w

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)

@ Corresponds to importance sampling using:

I_Ipx,_s|xpa Hl[xt—et] so w(x) =

tZE teE

X

60 = LT plxe 1 xpuco).

tcE

'Uz

/\
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Problem Set 4

Problem Set 4 will explore Gibbs sampling for topic models
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Latent Dirichlet allocation (LDA)

@ Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents

Documents Topics
politics religion sports
_—> president hindu baseball
obama judiasm soccer
washington ethics basketball
religion buddhism football

@ Many applications in information retrieval, document summarization,
and classification

New document What is this document about?

weather .50

> finance .49
sports .01

Words wy, ..., Wy Distribution of topics

@ LDA is one of the simplest and most widely used topic models
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Generative model for a document in LDA

© Sample the document’s topic distribution 6 (aka topic vector)
0 ~ Dirichlet(aq.7)

where the {at}tT:l are fixed hyperparameters. Thus 6 is a distribution
over T topics with mean 0y = a;/ >, ap

@ For i =1 to N, sample the topic z of the /'th word

z,-\@ ~ 9

© ... and then sample the actual word w; from the z;'th topic
w;|zi ~ B,

where {3:}]_, are the topics (a fixed collection of distributions on
words)
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Generative model for a document in LDA

@ Sample the document's topic distribution 6 (aka topic vector)
6 ~ Dirichlet(as.7)

where the {a;}/; are hyperparameters. The Dirichlet density, defined over
A={eRT:Vt0 >0, 0, =1} is

,
p(b,....07) o [J 0"
t=1

For example, for T=3 (65 =1 — 61 — 6,):

= ap = a3z = N7

log Pr(6)
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Generative model for a document in LDA

© ... and then sample the actual word w; from the z;'th topic
wi|zi ~ B,

where {8;}/_; are the topics (a fixed collection of distributions on

words)
Documents Topics
Dpolitics .0100 religion .0500 sports .0105
president .0095 hindu .0092 baseball .0100
> obama .0090 judiasm .0080 soccer .0055
washington .0085 ethics .0075 basketball .0050

v religion .0060 buddhism .0016 football .0045

ﬂt:{p(w|z:t)}
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Example of using LDA

Topics

gene 0.04

dna 0.02
1
genetic 0.01

Lifie 0.02

evolve 0.01
organism 0.01

/

brain 0.04
neuron  0.02
nerve 0.01

data 0.02
number  0.02
ﬁT computer 0.01

R —
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Topic proportions and

Documents X
assignments

Seeking Life’s Bare (Genetic) Necessities 21d

COLD SPRING HARBOR, NEW YORK—
How many cencs does an [URIISTH neg
Survive] Last week at the genome mecHme
here. two genome rescarchers with radically
different approaches presented complemen- Tt coming up with TeT
tary views of the hasic zenes needed for life i answer may be more than just a

One research team, using computer analy-— numbers e

ses 1o compare known senomes, concluded  more genomes are ggrTeTehean

that today’s[BFEARISS can he sustained with  sequenced. “It may be a way of orgar
just 250 genes, and that the carliest life forms — any newly sequenced zenome,” explains
Arcady Mushegian, a computat

lecular biologist at the Natic
for Biotechnol

“are not all that far apare.” especially in
comparison to the 75,000 senes in the hu
oo, notes Siv Andersso

he

required a mere |
other researcher mapy
ina simple parasite and esti
mated that for this organism,
800 genes are plenty todothe |
job—but that anything short
of 100 wouldn't be enough.
Although the numbers don’t
match precisely, those predictions

I genes

* Genome Mapping and Sequenc- - Nd
ing, Cold Spring Harbor, New York Stripping down. Computer analysis yields an esti-
May 810 12. mate of the minimum modern and ancient genomes.

SCIENCE « VOL. 272 » 24 MAY 1996

(Blei, Introduction to Probabilistic Topic Models, 2011)
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“Plate” notation for LDA model

Dirichlet
(6%
l hyperparameters
9 Topic distribution
d for document

Topic-word
Topic of word i of doc d

distributions 2 \ i
Wid Word

Variables within a plate are replicated in a conditionally independent manner
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Comparison of mixture and admixture models

Dirichlet
«
1 hyperparameters
0 Prior distribution P Topic distribution
over topics d for document
Topic-word l Topic-word l
distributions A 24 Topic of doc d distributions B \ Zid Topic of word i of doc d
Word Wid Word
i=1toN
d=1to D

@ Model on left is a mixture model

o Called multinomial naive Bayes (a word can appear multiple times)
e Document is generated from a single topic

e Model on right (LDA) is an admixture model
e Document is generated from a distribution over topics
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