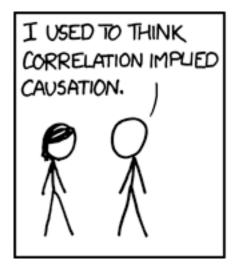
Causal Inference and Response Surface Modeling

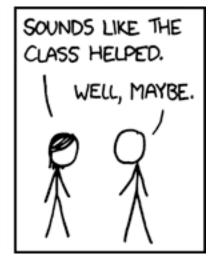
Inference and Representation

DS-GA-1005 Fall 2015

Guest lecturer: Uri Shalit

What is Causal Inference?





source: xkcd.com/552/

Causal questions as counterfactual questions

- Does this medication improve patients health?
 - Counterfactual: taking vs. not taking
- Is the new design bringing more customers?
 - Counterfactual: new design vs. old design
- Is online teaching better than in-class?
 - Counterfactual: ...

Potential Outcomes Framework (Rubin's Causal Model)

- Each unit (patient, customer, student, cell culture)
 has two potential outcomes: (y⁰,y¹)
 - y⁰ is the potential outcome had the unit not been treated: "control outcome"
 - y¹ is the potential outcome had the unit been treated: "treatment outcome"
- Treatment effect for unit *i*

$$= y_i^1 - y_i^0$$

Often interested in mean or expected treatment effect

Hypothetical example – effect of fish oil supplement on blood pressure (Hill & Gelman)

Unit	female	age	treatment	potential outcome y _i o	potential outcome Y _i 1	observed outcome y _i
Audrey	1	40	0	140	135	140
Anna	1	40	0	140	135	140
Bob	0	50	0	150	140	150
Bill	0	50	0	150	140	150
Caitlin	1	60	1	160	155	155
Cara	1	60	1	160	155	155
Dave	0	70	1	170	160	160
Doug	0	70	1	170	160	160

Source: Jennifer Hill

Mean
$$(y_i^1 - y_i^0) = -7.5$$

Mean $((y_i|treatment=1) - (y_i|treatment=0)) = 12.5$

The fundamental problem of causal inference: We only ever observe one of the two outcomes

- How to deal with The Problem:
 - Close substitutes
 - Randomization
 - Statistical Adjustment

Fundamental Problem (I): Close Substitutes

- Does chemical X corrode material M? Create a piece of material M, break it into. Place chemical on one piece.
- Does removing meat from my diet reduce my weight?
 - My weight before the diet is a close substitute to my weight after the diet had I not gone on the new diet
- Separated twin studies.

What assumptions have we made here?

Fundamental Problem (II): Randomization

- Assume the outcomes are generated from a distribution.
- Therefore if we sample enough times, we can estimate the mean effect:
 - Obtain a sample of the items of interest. Assign half to treatment and half to control, at random
 - This yields two estimates:

$$y_1^0,...,y_n^0$$

 $y_{n+1}^1,...,y_{2n}^1$

Average the estimates

Fundamental Problem (III): Statistical Adjustment

- Sometimes we can't find close substitutes, and can't randomize, for example:
 - Non-compliance: some of the people did not follow the new diet proscribed in the experiment.
 - Ethical: does breathing Asbestos cause cancer?
 - Impractical: do stricter gun laws lead to safer communities?
 - Retrospective: we have data from the past, for example educational attainment and college attendance.
- Control and treatment populations are different

Fundamental Problem (III): Statistical Adjustment

- Treatment and control group are not similar what can we do?
- Estimate the outcomes using a model, such as linear regression, random forests, BART (later today).
 Known as Response Surface Modeling
- Divide the sample into similar subgroups
- Re-weight the units to be more representative

Today we will focus on statistical adjustment with response surface modeling

Response Surface Modeling: Linear Regression

True model:

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \varepsilon_i$$

Fit without confounding variable x_i:

$$y_i = \beta_0^* + \beta_1^* T_i + \varepsilon_i$$

Represent x_i as a function T_i:

$$x_i = \gamma_0 + \gamma_1 T_i + \theta_i$$

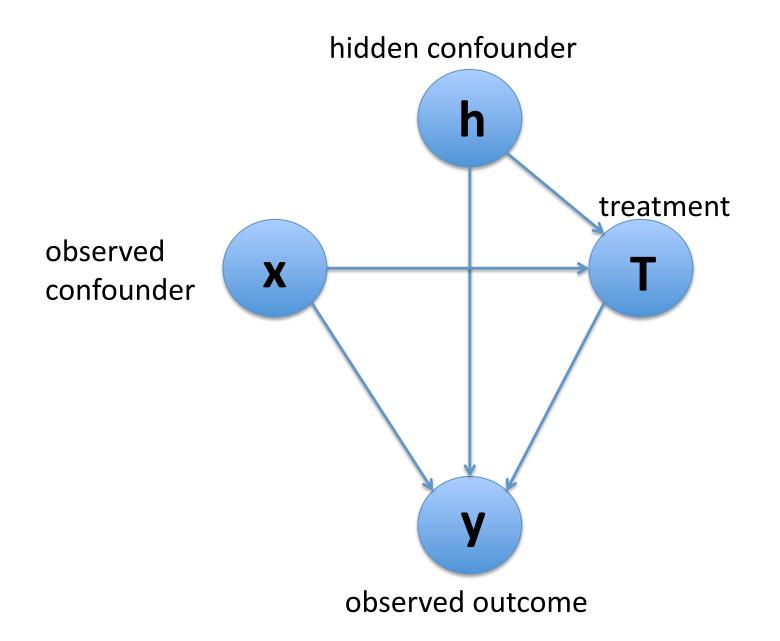
Obtain:

$$\beta_1^* = \beta_1 + \beta_2 \gamma_1$$

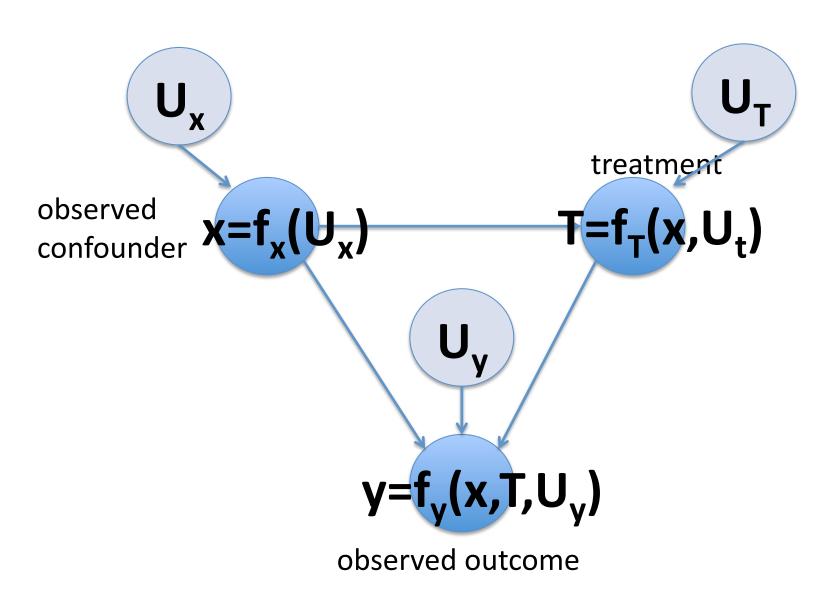
When will this work?

- No hidden confounders
- Model is correct

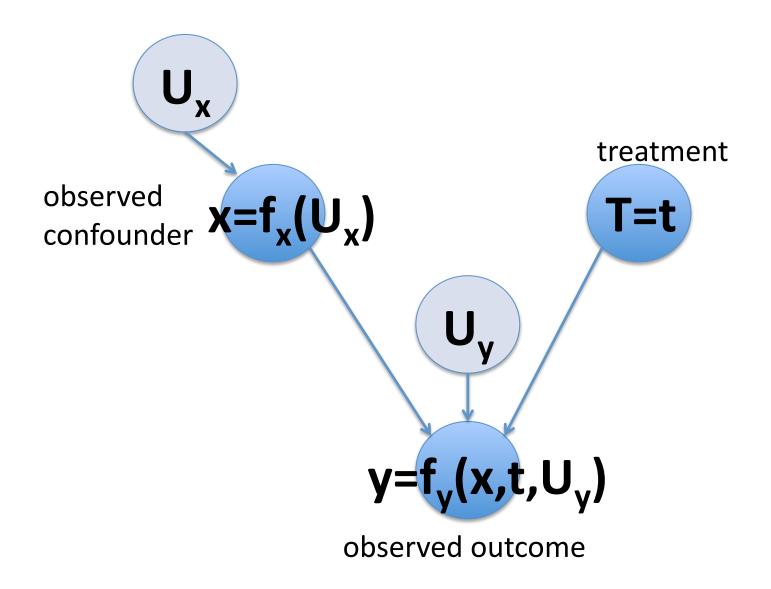
 Both assumptions patently false. How can we make them less false?



Pearl's do-calculus and structural equation modeling



Pearl's do-calculus and structural equation modeling



Response Surface Modeling

- We wish to model U_x , $f_x(U_x)$, U_y , and $f_y(U_y,x,t)$.
- In principle any regression method can work: use t=T_i as a feature, predict for both T_i=0, T_i=1.
- Linear regression is far too weak for most problems of interest!

Response Surface Modeling: BART

- In principle *any* regression method can work: use T_i as a feature, predict for both $T_i=0$, $T_i=1$.
- In 2008, Chipman, George and McCulloch introduced Bayesian Additive Regression Trees (BART).
- BART is non-linear, yet easy to fit and empirically robust to model misspecification.
- Proven as very successful for causal inference, especially adopted in the social sciences.

Bayesian Additive Regression Tress (BART)

Chipman, H. A., George, E. I., & McCulloch, R. E. (2010).

BART: Bayesian additive regression trees.

The Annals of Applied Statistics, 266-298.

bartMachine

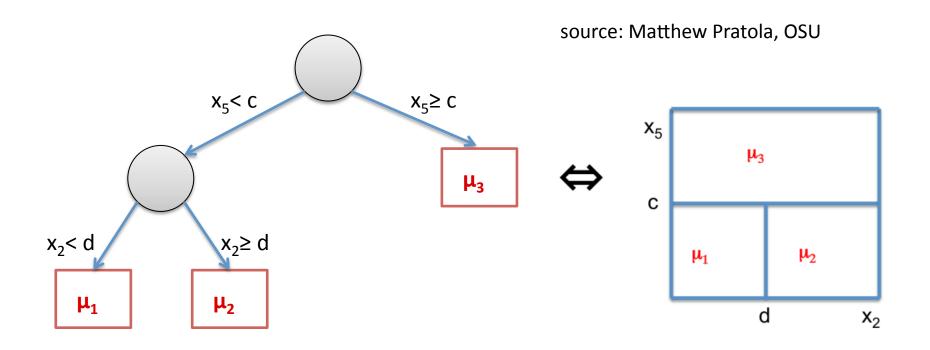
Kapelner, A., & Bleich, J. (2013).

bartMachine: Machine Learning with Bayesian

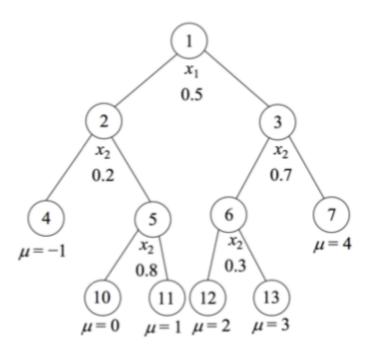
Additive Regression Trees.

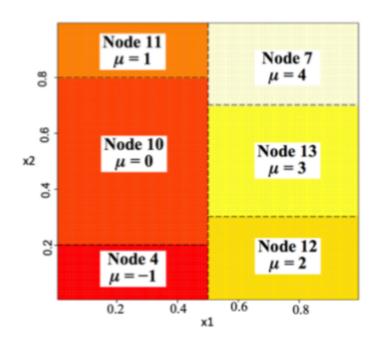
arXiv preprint arXiv:1312.2171.

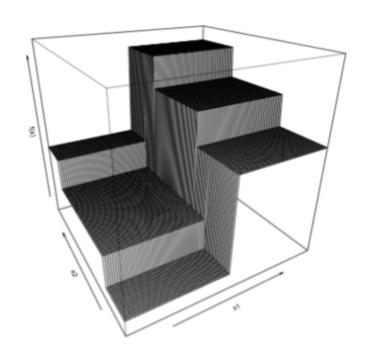
What's a regression tree?



 $\mu_k(x)$ can be e.g. linear function, a Gaussian process, or just a constant.







Three different views of a bivariate single tree.

Bayesian Regression Trees

- Each tree is a function $g(\cdot; T, M)$ parameterized by:
 - Tree structure T
 - Leaf functions M
- Bayesian framework:
 - − Data is generated y(x) = g(·; T, M) + ε, ε~ $N(0,\sigma^2)$
 - Prior: $\pi(M,T,\sigma^2) = \pi(M|T,\sigma^2)\pi(T|\sigma^2)\pi(\sigma^2)$

Bayesian Additive Regression Trees

- Each tree is a function g(·; T, M) parameterized by:
 - Tree structure T
 - Leaf functions M
- Bayesian framework:
 - − Data is generated y(x) = g(·; T, M) + ε, ε~ $N(0,\sigma^2)$
 - Prior: $\pi(M,T,\sigma^2) = \pi(M|T) \pi(T) \pi(\sigma^2)$
- Additive tress:
 - Data is generated y(x) = $\Sigma_{j=1...m}$ g(·; T_j, M_j) + ε, ε~ $N(0,\sigma^2)$, where each g(·; T_j, M_j) is a single tree
 - Prior factorizes:

$$\pi((M_1,T_1),...,(M_m,T_m),\sigma^2) = (\Pi_{j=1...m} \pi (M_j | T_j,\sigma^2) \pi(T_j | \sigma^2)) \pi(\sigma^2)$$

Prior over tree structure $\pi(T)$

- Nodes at depth d are non-terminal with probability $\alpha(1+d)^{-\beta}$, $\alpha \in (0,1)$, $\beta \in [0,\infty]$
 - Restricts depth
 - Standard implementation: α =0.95, β =2
- Non-terminal node: split on a random variable, choose splitting value at random from multiset of available values at the node

Prior over leaf functions $\pi(M|T)$

- Leaf functions are constants
- Leaf nodes: i.i.d. $\mu_k \sim N(\mu_{\mu}, \sigma_{\mu}^2)$
- $\mu_{\mu} = (y_{\text{max}} y_{\text{min}})/2m$
- σ_{μ}^{2} chosen such that $\mu_{\mu} \pm 2\sigma_{\mu}^{2}$ covers 95% of observed y values

Prior over variance $\pi(\sigma^2)$

- Recall prior: π (M,T, σ^2) = π (M|T) π (T) π (σ^2)
- $\pi(\sigma^2) \sim InvGamma(v/2,v\lambda/2)$ where v, λ are determined using a data guided heuristic

Likelihood model p(y|M,T, σ^2)

• Likelihood of outcome at node k: $y_k \sim N(\mu_k, \sigma^2)$

Sampling from the posterior

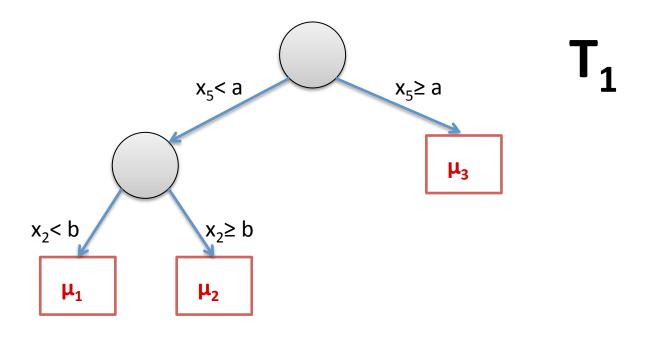
```
Gibbs sample from p((M_1,T_1),...,(M_m,T_m),\sigma^2|y,X)
Define R_{-i} = y - \sum_{k \neq i} g(X; T_k, M_k), the unexplained response
1: T_1 \mid R_{-1}, \sigma^2
2: M_1 \mid T_1, R_{-1}, \sigma^2
3: T_2 \mid R_{-2}, \sigma^2
4: M_2 \mid T_2, R_{-2}, \sigma^2
2m-1:T_{m}\mid R_{-m}, \sigma^{2}
2m : M_m \mid T_m, R_{-m}, \sigma^2
2m+1: \sigma^2 \mid T_1, M_1, \ldots, T_m, M_m, error
                        (error = y-\Sigma_k g_k(X;T_k,M_k))
```

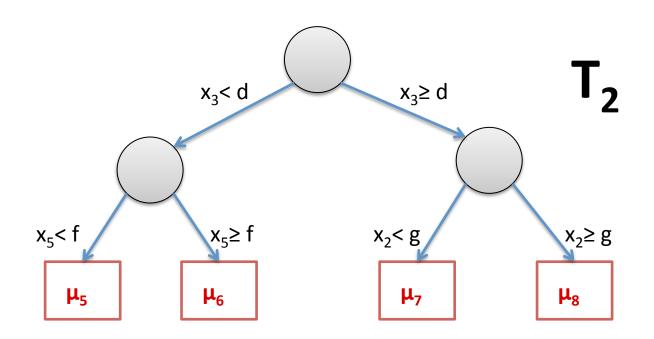
Sampling

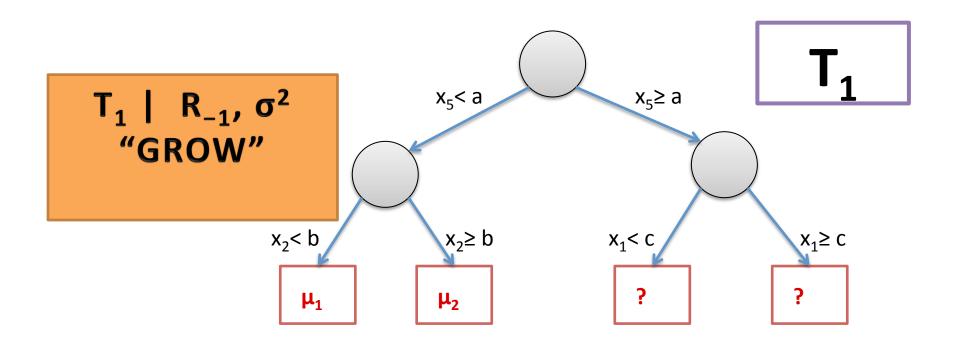
- Leaf node values M_i|T_i,R_{-i} are normally distributed
- σ^2 is an inverse gamma by conjugacy
- The difficult part is sampling the tree structures

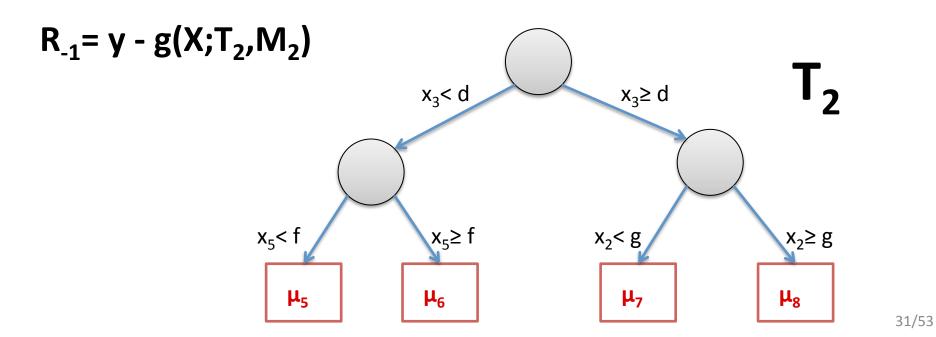
Metropolis-Hastings sampling of trees I

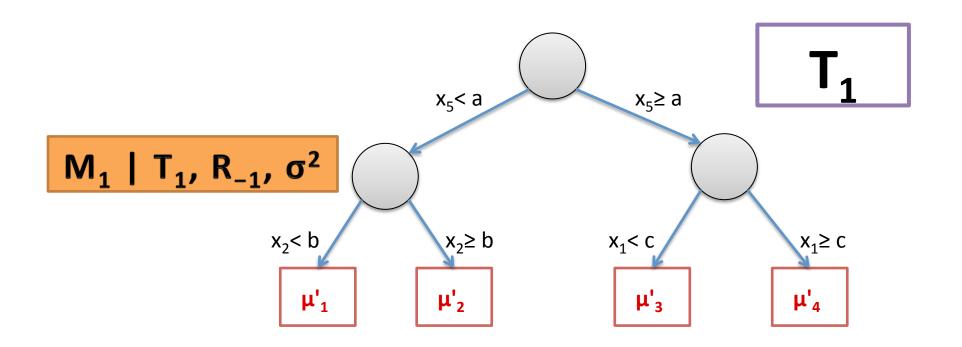
- Three different "rules":
 - GROW, chosen with probability p_{grow}
 - PRUNE, chosen with probability p_{prune}
 - CHANGE, chose with probability p_{change}
- Each rule potentially changes the probability of the tree and the likelihood of the observations
- GROW: add two child nodes to a terminal node
- PRUNE: prune two child nodes, making their parent a terminal node
- CHANGE: re-sample node splitting rule

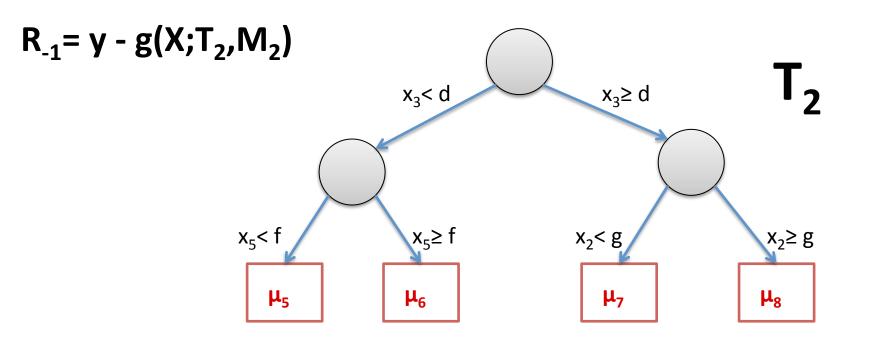




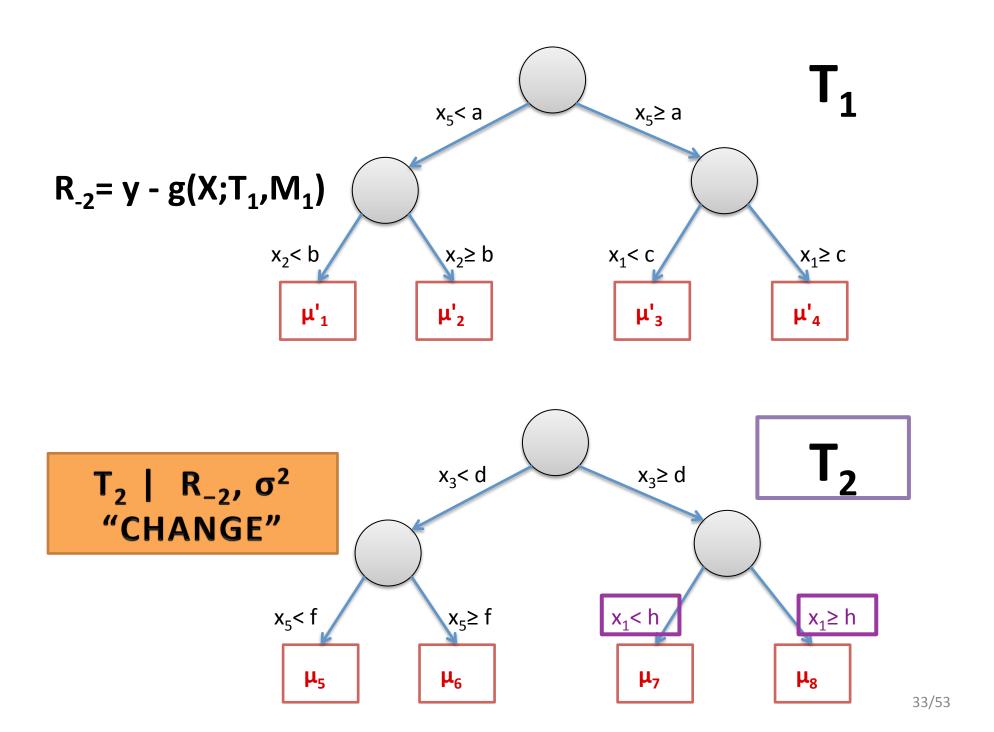


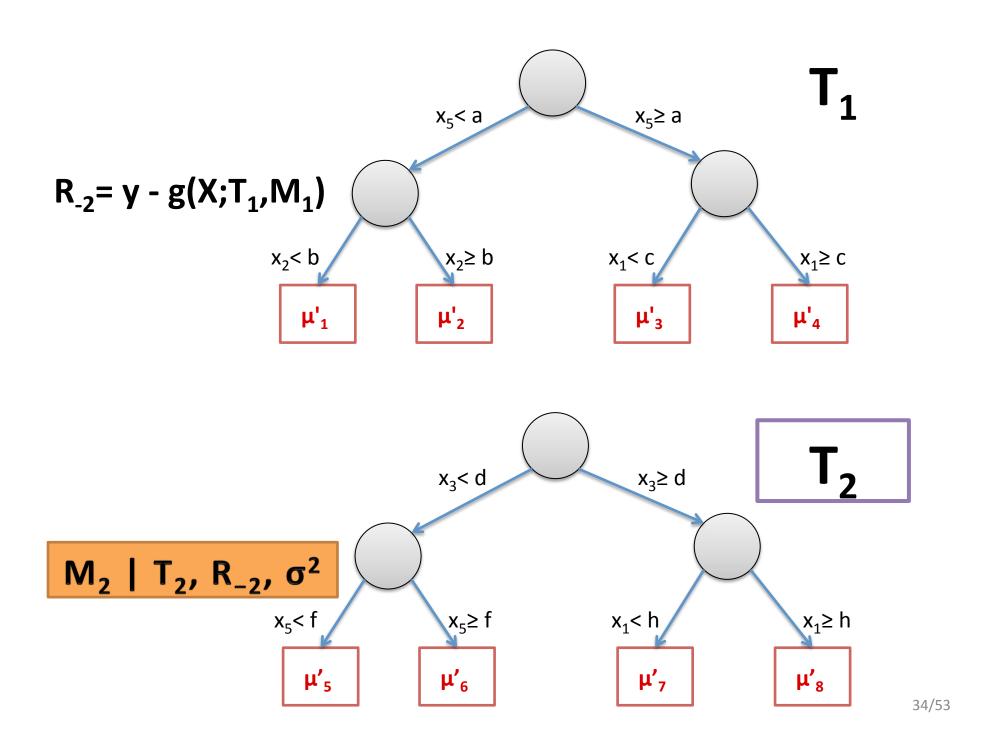






32/53





Metropolis-Hastings sampling of trees II

Proposal distribution (sometimes denoted Q) ratio,
 where R is the current unexplained response:

$$r = \frac{p(T_* \to T)p(T_* \mid R, \sigma^2)}{p(T \to T_*)p(T \mid R, \sigma^2)}$$

- Sample u~uniform(0,1) if u<min(1,r):
 - update tree to T_{*}

else:

stay with T

How to calculate the acceptance probability *r*

$$r = \frac{p(T_* \to T)p(T_* \mid R, \sigma^2)}{p(T \to T_*)p(T \mid R, \sigma^2)}$$

- Calculating $p(T|R, \sigma^2)$ is hard
- Use Bayes law:

$$p(T \mid R, \sigma^2) = \frac{p(R \mid T, \sigma^2) p(T \mid \sigma^2)}{p(R \mid \sigma^2)}$$

Obtain:

$$r = \frac{p(T_* \to T)}{p(T \to T_*)} \times \frac{p(R \mid T_*, \sigma^2)}{p(R \mid T, \sigma^2)} \times \frac{p(T_*)}{p(T)}$$

The acceptance probability

$$r = \frac{p(T_* \to T)}{p(T \to T_*)} \times \frac{p(R \mid T_*, \sigma^2)}{p(R \mid T, \sigma^2)} \times \frac{p(T_*)}{p(T)}$$

transition ratio

ratio

likelihood tree structure ratio

- Calculate the three terms for each of the updates GROW, PRUNE, CHANGE
- We will only calculate the transition ratio and tree structure ratio for the GROW rule 37/53

GROW rule transition ratio I

$$p(T \rightarrow T_*) = p_{grow} \times p(selecting_node_\eta) \times p(selecting_j_feature_to_split) \times p(selecting_k_value_to_split) = p_{grow} \times \frac{1}{b} \times \frac{1}{f_{adj}(\eta)} \times \frac{1}{n_{j:adj}(\eta)}$$

b=#terminal nodes

 $f_{adj}(\eta)$ is number of features left to split on. Can be smaller than d if a feature has less than two available values at node η)

 $n_{j \cdot adj}(\eta)$ is number of *unique* values left to split on in the j-th feature at node η

GROW rule transition ratio II

$$p(T_* \to T) =$$

$$p_{prune} \times p(selecting_node_\eta_to_prune) =$$

$$p_{prune} \times \frac{1}{w_2^*}$$

w₂*=#nodes with 2 terminal child nodes

$$\frac{p(T_* \to T)}{p(T \to T_*)} = \frac{p_{prune}}{p_{grow}} \frac{b \cdot f_{adj}(\eta) \cdot n_{j \cdot adj}(\eta)}{w_2^*}$$

GROW rule transition ratio III

b=#terminal nodes

 $f_{adj}(\eta)$ is number of features left to split on. Can be smaller than d if a feature has less than two available values at node η)

 $n_{j \cdot adj}(\eta)$ is number of *unique* values left to split on in the j-th feature at node η

w₂*=#nodes with 2 terminal child nodes

$$\frac{p(T_* \to T)}{p(T \to T_*)} = \frac{p_{prune}}{p_{grow}} \frac{b \cdot f_{adj}(\eta) \cdot n_{j \cdot adj}(\eta)}{w_2^*}$$

GROW rule tree structure ratio

The proposal tree T* differs from T in two child nodes: η_L and η_R

$$\frac{p(T_*)}{p(T)} = \frac{\left(1 - \frac{\alpha}{(1 + d_{\eta_L})^{\beta}}\right) \left(1 - \frac{\alpha}{(1 + d_{\eta_R})^{\beta}}\right) \frac{\alpha}{(1 + d_{\eta})^{\beta}} \frac{1}{f_{adj}(\eta)} \frac{1}{n_{j \cdot adj}(\eta)}}{\left(1 - \frac{\alpha}{(1 + d_{\eta})^{\beta}}\right)}$$

GROW rule likelihood ratio

- Somewhat tedious math.
- The assumption of normal distributions of the responses and normal priors allows this to be solved analytically.

BART algorithm overview

- data X∈ R^{d×n}, responses y∈ Rⁿ
- Choose hyperparameters
 - m (number of trees); α , β (tree structure prior); ν , λ (variance prior), and possibly others
- Run Gibbs sampling, cycle over m trees:
 - Change tree structure with one of 3 rules (GROW,
 PRUNE, CHANGE), sample with MH acceptance prob.
 - Sample leaf variables, using normal conjugacy
 - Sample variance σ using inverse Gamma conjugacy
- 1000 burn in iterations over all m trees
- 1000 additional draws to estimate posterior

Prediction Intervals

 Quantiles of posterior estimate after "burn-in" provide confidence estimates for prediction

BART use case (semi authentic) – Infant Health and Development Program*

- Population: children who were born prematurely with low weight
- Treatment T: give intensive high-quality child care and home visits from a trained provider
- Outcome(s) y: IQ test, visual-motor skills test
- Features X: birth weight, sex, mother_smoked, mother_education, mother_race, mother_age, prenatal_care, state (overall 25 features)

^{*}Hill, J. L. (2011). *Bayesian nonparametric modeling for causal inference*. Journal of Computational and Graphical Statistics, 20(1).

BART use case

- Treatment given only to children of nonwhite mothers race is confounding variable.
 - Other confounders as well?
- Fit BART function g(X,T) to observed outcomes y
- Estimate conditional average treatment effect:

$$\frac{1}{n} \sum_{i=1}^{n} g(x_i, 1) - g(x_i, 0)$$

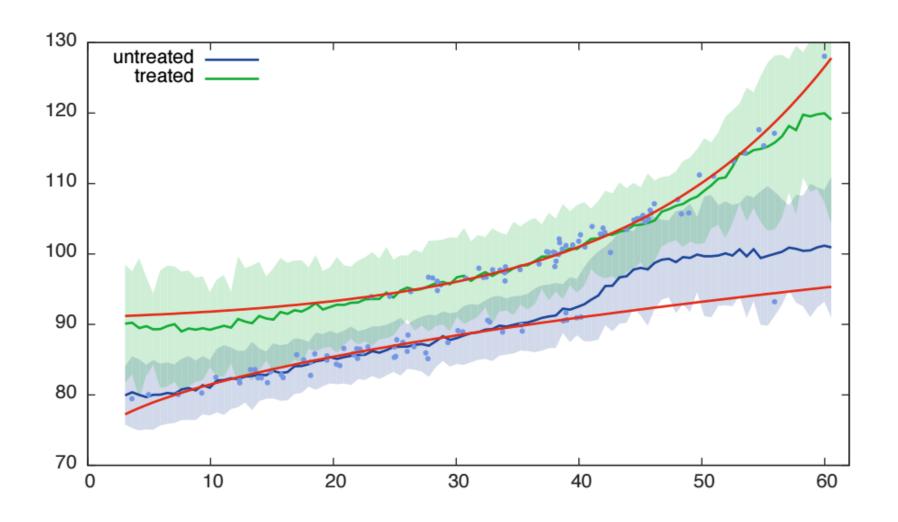
Estimate conditional average treatment effect on the treated:

$$\frac{1}{n_{treated}} \sum_{i:T_i=1}^n g(x_i, 1) - g(x_i, 0)$$

BART use case – uncertainty intervals and significance testing

- Let's say we discovered that the conditional average treatment effect is 6, i.e. we estimate the treated population gained 6 IQ points because of the treatment.
- Is this effect significant? Can we trust it? Can we base expensive policy decisions on this results?
- Heady questions... partial answers
- First step: obtain confidence intervals for the effect
 - Use permutation testing: permute the treatment variable values between the units to obtain a null distribution of treatment effect, then calculate a p-value
 - Use many posterior samples to get uncertainty intervals for predictions

Confidence intervals: an illustration



Summary

- Causal inference as counterfactual inference, estimating treatment effect for non-treated and vice-versa
- Difficult in cases where treated and control are different
- One approach learn a model relating the features, treatment, and outcome
- BART is a successful example of such a model
- Fitting BART by Gibbs and MH sampling