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What is Causal Inference?

T USED 10 THINK
CORRELATION lr’lPlJED
CAVSATION.

1

THEN I TOK A

STATISTICS CLASS.

Now I DON'T.

9

SOUNDS LIKE THE
CLASS HELPED.

WELL, MAYBE

§i

source: xkcd.com/552/
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Causal questions as
counterfactual questions

* Does this medication improve patients health?
— Counterfactual: taking vs. not taking

* |s the new design bringing more customers?

— Counterfactual: new design vs. old design

* |s online teaching better than in-class?
— Counterfactual: ...



Potential Outcomes Framework
(Rubin’s Causal Model)

e Each unit (patient, customer, student, cell culture)
has two potential outcomes: (y°,y?)

— y0is the potential outcome had the unit not been
treated: “control outcome”

— ylis the potential outcome had the unit been treated:
“treatment outcome”

* Treatment effect for unit i
- yil — yi0

e Often interested in mean or expected
treatment effect



Hypothetical example — effect of fish oil
supplement on blood pressure (Hill & Gelman)

female potential | potential | observed
outcome | outcome | outcome
Vio Vi1 Y;

Audrey 1 0 140 135 140
Anna 1 40 0 140 135 140
Bob 0 50 0 150 140 150
Bill 0 50 0 150 140 150
Caitlin 1 60 1 160 155 155
Cara 1 60 1 160 155 155
Dave 0 70 1 170 160 160
Doug 0 70 1 170 160 160

Source: Jennifer Hill

Mean(y!—-y°) =-7.5
Mean( (y;|treatment=1) - (y;| treatment=0)) = 12.5 5/53



The fundamental problem of
causal inference:
We only ever observe one of the
two outcomes

* How to deal with The Problem:
— Close substitutes
— Randomization
— Statistical Adjustment
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Fundamental Problem (I):
Close Substitutes

* Does chemical X corrode material M? Create a piece
of material M, break it into. Place chemical on
one piece.

 Does removing meat from my diet reduce my
weight?
My weight before the diet is a close substitute to my
weight after the diet had | not gone on the new diet

e Separated twin studies.

What assumptions have we
made here?



Fundamental Problem (I1):
Randomization

* Assume the outcomes are generated from a
distribution.

* Therefore if we sample enough times, we can
estimate the mean effect:

 Obtain a sample of the items of interest. Assign half to
treatment and half to control, at random

* This yields two estimates:
V.20 y,0
yn+111'"1y2n1

* Average the estimates



Fundamental Problem (I1):
Statistical Adjustment

* Sometimes we can’t find close substitutes, and can’t
randomize, for example:

 Non-compliance: some of the people did not follow the
new diet proscribed in the experiment.

* Ethical: does breathing Asbestos cause cancer?

* Impractical: do stricter gun laws lead to safer
communities?

* Retrospective: we have data from the past, for example
educational attainment and college attendance.

e Control and treatment populations are different



Fundamental Problem (I1):
Statistical Adjustment

Treatment and control group are not similar — what
can we do?

Estimate the outcomes using a model, such as linear
regression, random forests, BART (later today).
Known as Response Surface Modeling

Divide the sample into similar subgroups
Re-weight the units to be more representative

Today we will focus on statistical adjustment
with response surface modeling



Response Surface Modeling:
Linear Regression

True model:

Y =Py + BT+ byx; +&

Fit wi’ghou} confounding variable x::
Yi=Py+PI+¢

Represent x. as a function T::

X, =Yo + 11 +0,

Obtain:

/3)1* = /3)1 + /3)2)/1



When will this work?

e No hidden confounders
e Modelis correct

* Both assumptions patently false. How can we
make them less false?



hidden confounder

treatment

observed
confounder

observed outcome
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Pearl’s do-calculus and structural
equation modeling

U U,

treatment

observed x=fx( Ux) T=fT(X, Ut)

confounder

X

Uy

y=fy(xlTl Uy)

observed outcome



Pearl’s do-calculus and structural
equation modeling

U

X
treatment

observed X=fx(Ux) T=t

confounder

Uy

y=fy(xltl Uy)

observed outcome



Response Surface Modeling

* We wish to model U, f (U,), U,, and fy(Uy,x,t).

* In principle any regression method can work:
use t=T, as a feature, predict for both
T.=0, T=1.

* Linear regression is far too weak for most
problems of interest!



Response Surface Modeling: BART

* |In principle any regression method can work:
use T, as a feature, predict for both T=0, T.=1.

* |[n 2008, Chipman, George and McCulloch
introduced Bayesian Additive Regression Trees
(BART).

 BART is non-linear, yet easy to fit and
empirically robust to model misspecification.

* Proven as very successful for causal inference,
especially adopted in the social sciences.



Bayesian Additive Regression Tress

(BART)

Chipman, H. A., George, E. |., & McCulloch, R. E. (2010).
BART: Bayesian additive regression trees.
The Annals of Applied Statistics, 266-298.

bartMachine
Kapelner, A., & Bleich, J. (2013).
bartMachine: Machine Learning with Bayesian

Additive Regression Trees.
arXiv preprint arXiv:1312.2171.



What's a regression tree?

source: Matthew Pratola, OSU

)

Wy 19)

K4 )

1. (x) can be e.g. linear function, a
Gaussian process, or just a constant.
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Three different views of
a bivariate single tree.

source: Matthew Pratola, OSY>3



Bayesian Regression Trees

* Each treeis a function g(- ; T, M) parameterized by:
— Tree structure T
— Leaf functions M

* Bayesian framework:
— Data is generated y(x) = g(- ; T, M) + £, e~N(0,0?)
— Prior: ©(M,T,0?) = n(M|T,0%)nt(T| 0%) i(o?)



Bayesian Additive Regression Trees

* Each treeis a function g(- ; T, M) parameterized by:
— Tree structure T
— Leaf functions M
e Bayesian framework:
— Data is generated y(x) = g(- ; T, M) + £, e~N(0,0?)
— Prior: (M, T,0?) = t(M|T) =(T) r(o?)
* Additive tress:
— Datais generated y(x) =%._;  8(-; T, M) +¢, e~N(0,0?),
where each g(-; T, M)) is a single tree

— Prior factorizes:
ﬂ:((MllTl)l"'I(Mmle)loz) =(H

j=1...m

n (Mj |Tj102) 71:(Tj |0%)) m(0?)



Prior over tree structure w(T)

* Nodes at depth d are non-terminal with
probability a(1+d)™®, a=(0,1), B<[0,°°]
— Restricts depth
— Standard implementation: a=0.95, =2

* Non-terminal node: split on a random
variable, choose splitting value at random
from multiset of available values at the node



Prior over leaf functions n(M|T)

_eaf functions are constants
_eaf nodes: i.i.d. w~N(u,, 0,°)
L, = (ymax_ymin)/zm

0,° chosen such that p,+20,% covers 95% of
observed y values




Prior over variance mt(o?)

* Recall prior: m (M,T,0%) =t (M|T) =n(T) n(c?)

* 11(0%) ~InvGamma(v/2,v\/2)
where v, A are determined using a data guided
heuristic

Likelihood model p(y|M,T,oc?)

e Likelihood of outcome at node k:
ykNN(IJ'k ) 02 )



Sampling from the posterior

Gibbs sample from p((M,,T,),...,(M_,T.),0°|y,X)

Define R=y - Xy g(X;T,,M,), the unexplained response
1:T,| R, 0?

2:M; | T, R, 0?

3:T,| R, 02

4:M, | T, R, o°

2m-1:T_ | R, 02
2m:M_ | T, R, 02
2m+1:0%| T,M,, ..., T_,M_, error

(error =y-%, g.(X;T,,M,) )



Sampling

* Leaf node values M.|T,,R_ are normally
distributed

* 0Zis an inverse gamma by conjugacy

* The difficult part is sampling the tree
structures



Metropolis-Hastings sampling of trees |

Three different “rules”:

— GROW, chosen with probability p,,,,

— PRUNE, chosen with probability p .
— CHANGE, chose with probability p ,,nee

Each rule potentially changes the probability of the
tree and the likelihood of the observations

GROW: add two child nodes to a terminal node

PRUNE: prune two child nodes, making their parent
a terminal node

CHANGE: re-sample node splitting rule



]

X< f

Hs

K7

Hsg
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K4

R,=Y- g(X;TerZ)

X< f

Hs

K7
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R,=Y- g(X;TpMz)

X< f

Hs

K7

X2 8

Hsg
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R,=y-g(X;T,,M,)

X,< b

Hs He K7 Hsg
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R,=y-g(X;T,,M,)

X,< b

M, | T, R_,, o2

X< f

Hs
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Metropolis-Hastings sampling of trees Il

* Proposal distribution (sometimes denoted Q) ratio,
where R is the current unexplained response:

_p(T, > T)p(T, | R,0°)

r
p(T = T.)p(TIR,07)

e Sample u~uniform(0,1)
if u<min(1,r):
— update tree to T.
else:
— stay with T



How to calculate the acceptance probability r

_p(T.—=T)p(T.1R07)
p(T = T.)p(T |R,c°)

* Calculating p(T|R, 0% ) is hard
e Use Bayes law:

r

p(RIT,o)p(T|0%)

TIR,0%)=
piR.07) (R0

e Obtain:

_pT.=T) pRIT.0%) pT)
p(T—=T.) p(RIT,0*) p(T)

r




The acceptance probability

_pL.=T) p(RIT,0%) p(T)
p(T—T.) p(RIT,0°)  p(T)

r

transition likelihood tree structure
ratio ratio ratio

e Calculate the three terms for each of the
updates GROW, PRUNE, CHANGE

 We will only calculate the transition ratio and
tree structure ratio for the GROW rule



GROW rule transition ratio |

p(T —=T.,)=p,,,, % p(selecting _node _n)x
p(selecting _ j_ feature _to_ split) x
p(selecting _k _value _to_ split) =

1 1 1

— X X

b fadj (7]) nj-adj (7])

P grow X

b=tterminal nodes

faqi(n) is number of features left to split on.
Can be smaller than d if a feature has less than two
available values at node n)

N;i.agi(N) is number of unique values left to split on in the
j-th feature at node n



GROW rule transition ratio |l

p(T.—=T)=
P prune X P(selecting _node _n _to_ prune) =

1

P prune X—
w,

w, =#nodes with 2 terminal child nodes

p(ﬂ — T) _ pprune b . fadj (Tl) . nj-adj (Tl)

p(T — 7;) pgrow W2



GROW rule transition ratio Il

b=#terminal nodes

faqi(N) is number of features left to split on.
Can be smaller than d if a feature has less than two

available values at node n)

Ni.aqi(N) is number of unique values left to split on in the
j-th feature at node n

w, =#nodes with 2 terminal child nodes

(T — T) pprune b fad] (77) n] -adj (T])
p(T — T ) pgrow W2




GROW rule tree structure ratio

The proposal tree T™ differs from T in two child nodes:
n, and ng

| o | o o | 1
pT) \ (d+d, )’ A+d, ) J(A+d,) f..(1) 1,y (10)

p(T) ( a )
| -
(1+d,)



GROW rule likelihood ratio

e Somewhat tedious math.

 The assumption of normal distributions of the
responses and normal priors allows this to be
solved analytically.



BART algorithm overview

data Xe R%", responses ye R"
Choose hyperparameters

— m (number of trees); a, B (tree structure prior);
v, A (variance prior), and possibly others

Run Gibbs sampling, cycle over m trees:

— Change tree structure with one of 3 rules (GROW,
PRUNE, CHANGE), sample with MH acceptance prob.

— Sample leaf variables, using normal conjugacy

— Sample variance o using inverse Gamma conjugacy
1000 burn in iterations over all m trees
1000 additional draws to estimate posterior



Prediction Intervals

* Quantiles of posterior estimate after “burn-in”
provide confidence estimates for prediction



BART use case (semi authentic) —
Infant Health and Development Program*

Population: children who were born prematurely
with low weight

Treatment T: give intensive high-quality child
care and home visits from a trained provider

Outcome(s) y: 1Q test, visual-motor skills test

Features X: birth weight, sex, mother_smoked,
mother_education, mother _race, mother_age,
prenatal care, state (overall 25 features)

*Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of
Computational and Graphical Statistics, 20(1).



BART use case
Treatment given only to children of nonwhite mothers —

race is confounding variable.
Other confounders as well?

Fit BART function g(X,T) to observed outcomes y
Estimate conditional average treatment effect:

1 n
— 2,80 D= 8(x,0)
i=1

Estimate conditional average treatment effect on the
treated:

1

Y g(x,1)-g(x,,0)

Nyreatea i:T:=1



BART use case — uncertainty intervals and
significance testing

Let’s say we discovered that the conditional average treatment
effect is 6, i.e. we estimate the treated population gained 6 IQ
points because of the treatment.

Is this effect significant? Can we trust it? Can we base expensive
policy decisions on this results?

Heady questions... partial answers
First step: obtain confidence intervals for the effect

— Use permutation testing: permute the treatment variable
values between the units to obtain a null distribution of
treatment effect, then calculate a p-value

— Use many posterior samples to get uncertainty intervals for
predictions



Confidence intervals: an illustration
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Summary

Causal inference as counterfactual inference,
estimating treatment effect for non-treated
and vice-versa

Difficult in cases where treated and control are
different

One approach — learn a model relating the
features, treatment, and outcome

BART is a successful example of such a model
Fitting BART by Gibbs and MH sampling



