Inference and Representation

David Sontag

New York University

Lecture 8, Nov. 3, 2015

Latent Dirichlet allocation (LDA)

• **Topic models** are powerful tools for exploring large data sets and for making inferences about the content of documents

 Many applications in information retrieval, document summarization, and classification

• LDA is one of the simplest and most widely used topic models

2 / 19

Generative model for a document in LDA

() Sample the document's **topic distribution** θ (aka topic vector)

 $\theta \sim \text{Dirichlet}(\alpha_{1:T})$

where the $\{\alpha_t\}_{t=1}^{T}$ are fixed hyperparameters. Thus θ is a distribution over T topics with mean $\theta_t = \alpha_t / \sum_{t'} \alpha_{t'}$

② For i = 1 to N, sample the **topic** z_i of the *i*'th word

 $z_i | \theta \sim \theta$

 \bigcirc ... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i | z_i \sim \beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

Generative model for a document in LDA

() Sample the document's **topic distribution** θ (aka topic vector)

 $\theta \sim \text{Dirichlet}(\alpha_{1:T})$

where the $\{\alpha_t\}_{t=1}^{T}$ are hyperparameters. The Dirichlet density, defined over $\Delta = \{\vec{\theta} \in \mathbb{R}^T : \forall t \ \theta_t \ge 0, \sum_{t=1}^{T} \theta_t = 1\}$, is:

$$p(\theta_1,\ldots,\theta_T) \propto \prod_{t=1}^T \theta_t^{\alpha_t-1}$$

For example, for T=3 $(\theta_3 = 1 - \theta_1 - \theta_2)$:

3 ... and then sample the actual **word** w_i from the z_i 'th topic

 $w_i | z_i \sim \beta_{z_i}$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

(Blei, Introduction to Probabilistic Topic Models, 2011)

"Plate" notation for LDA model

Variables within a plate are replicated in a conditionally independent manner

- How to learn topic models?
 - Importance of hyperparameters
 - Choosing number of topics
 - Evaluating topic models
- Examples of extending LDA
 - Polylingual topic models
 - Author-topic model

Learning algorithm: Gibbs Sampling

By putting a prior distribution on the parameters, they become random variables which can be sampled within the Gibbs Sampling algorithm:

Figure: Putting a Bayesian prior on the parameters: $\beta \sim \text{Dirichlet}(\cdot; \beta_0)$

Collapsed Gibbs sampler (Griffiths and Steyvers '04)

- Learn using a *collapsed* Gibbs sampler
- After marginalizing out θ_d for all documents d and β , we get:

$$P(z_i = t \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n_{-i,t}^{(w_i)} + \beta_0}{n_{-i,t}^{(\cdot)} + W\beta_0} \frac{n_{-i,t}^{(d_i)} + \alpha}{n_{-i,\cdot}^{(d_i)} + T\alpha}$$

n derived from *z*, the assignments of words to topics (*W* words, *T* topics, and uniform hyperparameters α and β_0) Eiset ratio is probability of *w* under topic *t*, second ratio is probability

- First ratio is probability of *w_i* under topic *t*, second ratio is probability of topic *t* in document *d_i*
- Given a sample, can get an estimate for β and θ_d by:

$$\hat{\beta}_{w,t} = \frac{n_t^{(w)} + \beta_0}{n_t^{(\cdot)} + W\beta_0}$$
$$\hat{\theta}_t^{(d)} = \frac{n_t^{(d)} + \alpha}{n_t^{(d)} + T\alpha}$$

- Goal: topic models that are aligned across languages
- Training data: corpora with multiple documents in each language
 - EuroParl corpus of parliamentary proceedings (11 western languages; exact translations)
 - Wikipedia articles (12 languages; not exact translations)
- How to do this?

Polylingual topic models (Mimno et al., EMNLP '09)

- DA centralbank europæiske ecb s lån centralbanks
- DE zentralbank ezb bank europäischen investitionsbank darlehen
- EL τράπεζα τράπεζας κεντρική εκτ κεντρικής τράπεζες
- EN bank central ecb banks european monetary
- ES banco central europeo bce bancos centrales
- FI keskuspankin ekp n euroopan keskuspankki eip
- FR banque centrale bce européenne banques monétaire
- IT banca centrale bce europea banche prestiti
- NL bank centrale ecb europese banken leningen
- PT banco central europeu bce bancos empréstimos
- SV centralbanken europeiska ecb centralbankens s lån

- DA børn familie udnyttelse børns børnene seksuel
- DE kinder kindern familie ausbeutung familien eltern
- EL παιδιά παιδιών οικογένεια οικογένειας γονείς παιδικής
- EN children family child sexual families exploitation
- ES niños familia hijos sexual infantil menores
- FI lasten lapsia lapset perheen lapsen lapsiin
- FR enfants famille enfant parents exploitation familles
- IT bambini famiglia figli minori sessuale sfruttamento
- NL kinderen kind gezin seksuele ouders familie
- PT crianças família filhos sexual criança infantil
- SV barn barnen familjen sexuellt familj utnyttjande

- How would you use this?
- How could you extend this?

- Goal: topic models that take into consideration author interests
- Training data: corpora with label for who wrote each document
 - Papers from NIPS conference from 1987 to 1999
 - Twitter posts from US politicians
- Why do this?
- How to do this?

Author-topic model (Rosen-Zvi et al., UAI '04)

Figure 1: Generative models for documents. (a) Latent Dirichlet Allocation (LDA; Blei et al., 2003), a topic model. (b) An author model. (c) The author-topic model.

Most likely author for a topic

TOPIC 31		TOPIC 61		TOPIC 71		TOPIC 100	
WORD	PROB.	WORD	PROB.	WORD	PROB.	WORD	PROB.
SPEECH	0.0823	BAYESIAN	0.0450	MODEL	0.4963	HINTON	0.0329
RECOGNITION	0.0497	GAUSSIAN	0.0364	MODELS	0.1445	VISIBLE	0.0124
HMM	0.0234	POSTERIOR	0.0355	MODELING	0.0218	PROCEDURE	0.0120
SPEAKER	0.0226	PRIOR	0.0345	PARAMETERS	0.0205	DAYAN	0.0114
CONTEXT	0.0224	DISTRIBUTION	0.0259	BASED	0.0116	UNIVERSITY	0.0114
WORD	0.0166	PARAMETERS	0.0199	PROPOSED	0.0103	SINGLE	0.0111
SYSTEM	0.0151	EVIDENCE	0.0127	OBSERVED	0.0100	GENERATIVE	0.0109
ACOUSTIC	0.0134	SAMPLING	0.0117	SIMILAR	0.0083	COST	0.0106
PHONEME	0.0131	COVARIANCE	0.0117	ACCOUNT	0.0069	WEIGHTS	0.0105
CONTINUOUS	0.0129	LOG	0.0112	PARAMETER	0.0068	PARAMETERS	0.0096
AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.
Waibel_A	0.0936	Bishop_C	0.0563	Omohundro_S	0.0088	Hinton_G	0.2202
Makhoul_J	0.0238	Williams_C	0.0497	Zemel_R	0.0084	Zemel_R	0.0545
De-Mori_R	0.0225	Barber_D	0.0368	Ghahramani_Z	0.0076	Dayan_P	0.0340
Bourlard_H	0.0216	MacKay_D	0.0323	Jordan_M	0.0075	Becker_S	0.0266
Cole_R	0.0200	Tipping_M	0.0216	Sejnowski_T	0.0071	Jordan_M	0.0190
Rigoll_G	0.0191	Rasmussen_C	0.0215	Atkeson_C	0.0070	Mozer_M	0.0150
Hochberg_M	0.0176	Opper_M	0.0204	Bower_J	0.0066	Williams_C	0.0099
Franco_H	0.0163	Attias_H	0.0155	Bengio_Y	0.0062	de-Sa_V	0.0087
Abrash_V	0.0157	Sollich_P	0.0143	Revow_M	0.0059	Schraudolph_N	0.0078
Movellan_J	0.0149	Schottky_B	0.0128	Williams_C	0.0054	Schmidhuber_J	0.0056

Perplexity as a function of number of observed words

