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A (very!) hard perceptual problem

* How do people perceive music?

* Experts find individual artistic
influence and innovation

 Difficult to grasp 10,000s of songs and diverse
genres at once




Machine perception

* Process all the music in the world
with a holistic view

* One step beyond object- and
speech-recognition [




Outline of our approach

The large scale data
25,000 songs, 9,000 artists, 70 years

The model

Unsupervised probabilistic topic models on acoustics

Evaluating perception

Properties of learned topics and influence

Analyzing innovation
Contrasting innovation with influence
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The Million Songs Dataset
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each with detailed acoustic features

* Rich (but noisy) metadata: artist familiarity, genre tags
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Acoustic Patterns




Acoustic Patterns
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2 2 2 0 ) O D



Acoustic Patterns
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Cluster descriptors
iInto 5000 patterns
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Probabilistic Generative Model
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Genres =2 Topics

Humans understand music through genres
Automatically discover genre structure > topics
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e Each topic is a distribution over
acoustic patterns

probability



What defines a topic?

e Each topic is a distribution over
acoustic patterns

N

probability



What defines a topic?

e Each topic is a distribution over
acoustic patterns

NS

probability



What defines a topic?

e Each topic is a distribution over
acoustic patterns

WN:

N

probability



What defines a topic?

* Each topic is a distribution over
acoustic patterns

Topic 1 Topic 2




A song is a distribution over topics

* Model each song as a mixture of topics
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* For example Bjork’s 1995 song Isobel
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Topic 3 is about pop & classical
Topic 15 is about electronic & hip-hop
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A song is a distribution over topics

Song 2

0.3




Topics evolve over time — topic

1956 Hound Dog
by Elvis Presley

1968 Big Sky
by The Kinks

1988 Michelle
by Guns’n’Roses




Songs influence the evolution of topics

In 1965, Bob Dylan switches from acoustic to
electric guitar:
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Songs influence the evolution of topics

In 1965, Bob Dylan switches from acoustic to
electric guitar:

... and an entire topic goes with him, with
artists such as The Velvet Underground and

Jimmy Hendrix
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Each topic evolves in time, driven by the
influence of songs

Song 131

L]

Influenced

topic attime t topic at time t+1



Probabilistic model overview

e Eac
e Eac
e Eac

n topic is a distribution over acoustic patterns
n song is a distribution over topics

n topic evolves in time, driven by the influence

scores of songs
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Outline of our approach

The large scale data
25,000 songs, 9,000 artists, 70 years

The model

e Acoustic signal processing
e The probabilistic model — concep’a
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Evaluating perception

Properties of learned topics and influence

Analyzing innovation
Contrasting innovation with influence



Topic-Word Distribution

* For each year, each topic is a distribution over
the 5033 acoustic patterns

* The distribution is parameterized by a vector
B, €RS5033

 The distribution is:
Pr(word = i|topic = k, time = t) o exp(pf, (7))



Song-Topic Distribution

* Each song d is assigned a multinomial
distribution over the K topics 6, EA"



Topic evolution — influence
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Probabilistic Generative Model
Gerrish & Blei (2010)
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Probabilistic model - summary

* Each topic is a distribution over acoustic patterns:
/J)k,t for all topics k and times t

* Each song is a distribution over topics:

0., forall songs

* Each topic evolves in time, driven by the influence
sc@rretsimlggn’gompmbiengiss intractable, solved
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Results

Model’s topics match known genres
(genre tags not used in training)
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Results

Model’s topics match known genres
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Results

Model’s topics match known genres
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Results

Model’s topics match known genres
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Results — validating influence measure

e Validating our influence
measure against the
influence graph of
allmusic.com

Figure shows

-log,, p-value

of Spearman correlation
with allmusic.com
influence measure
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word frequencies between

future and past



Results — validating influence measure

e Validating our influence

measure against the 0.3
influence graph of RE
allmusic.com g A
* Figure shows gm
-log,, p-value ‘(’2
of Spearman correlation® ° _
with allmusic.com e Fuiro-past model (mean eorr 007)
inﬂuence measure 1953 1969 198\;ear 1993 2005

* Future-past model based on changes in musical-
word frequencies between future and past



Results — examples of influential artists

 Many familiar artists: Bob Dylan, Rolling Stones,
Bob Marley, Velvet Underground ...

e But also lesser known artists:

— Model 500 “is widely credited as the originator of
techno music”

— Killing Joke “Finding modest commercial success, Killing
Joke have influenced Nirvana, Metallica,
Soundgarden...”

— Suicide “Never widely popular amongst the general
public, Suicide are highly influential... [many] sounds of
the '80s and '90s gesture back to [Suicide]”
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Musical innovation

How does being innovative relate to being
influential?




Musical innovation

* Probabilistic model: a way to model innovation

* Innovative songs will have low likelihood according
to a model fitted only to earlier songs

* Low-likelihood songs:
Described as innovative, experimental or unusual in

u ]

the literature & »




Musical innovation vs. musical influence

* No monotonic correlation between the two
(Spearman r=-0.019, p > 0.05)

* More complex relations seem to exist



Musical innovation vs. musical influence

—g= Median innovation of top 10% most influential songs
=== \edian innovation
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Conclusion

* First large-scale quantitative model of
artistic influence

* Validated by human-curated influence measures

* |Intriguing connections between innovation and
influence




