
Gaussian Processes

Dan Cervone

NYU CDS

November 10, 2015

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 1 / 22

What are Gaussian processes?

GPs let us do Bayesian inference on functions. Using GPs we can:

Interpolate spatial data

Forecast time series

Represent latent surfaces for classification, point processes, etc.

Emulate likelihoods and complex, black-box functions

Model cool stuff across many scientific disciplines!

[https://pythonhosted.org/infpy/gps.html]

[http://becs.aalto.fi/en/research/bayes/mcmcstuff/traindata.jpg]

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 2 / 22

Preliminaries

The basic setup:

Data set {(xi , yi), i = 1, . . . , n}.
Inputs xi ∈ S ⊂ RD .

Outputs yi ∈ R.

xi ∼ p(x)

yi = f (xi) + εi

εi
iid∼ N (0, σ2

ε)

Definition

f is a Gaussian process if for any collection X = {xi ∈ S, i = 1, . . . , n},f (x1)
...

f (xn)

 ∼ N (µ(X),K (X,X))

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 3 / 22

Preliminaries

The basic setup:

Data set {(xi , yi), i = 1, . . . , n}.
Inputs xi ∈ S ⊂ RD .

Outputs yi ∈ R.

xi ∼ p(x)

yi = f (xi) + εi

εi
iid∼ N (0, σ2

ε)

Definition

f is a Gaussian process if for any collection X = {xi ∈ S, i = 1, . . . , n},f (x1)
...

f (xn)

 ∼ N (µ(X),K (X,X))

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 3 / 22

Mean, covariance functions

GPs characterized by mean, covariance functions:
Mean function: µ(x).
WLOG, we can assume µ = 0. (Why?)
Covariance function k where

[K (X,X)]ij = k(xi , xj) = Cov(f (xi), f (xj)).

Example:

k(xi , xj) = τ 2 exp

(
−||xi − xj ||2

2`2

)
(squared exponential)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 4 / 22

Mean, covariance functions

GPs characterized by mean, covariance functions:
Mean function: µ(x).
WLOG, we can assume µ = 0. (Why?)
Covariance function k where

[K (X,X)]ij = k(xi , xj) = Cov(f (xi), f (xj)).

Example:

k(xi , xj) = τ 2 exp

(
−||xi − xj ||2

2`2

)
(squared exponential)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 4 / 22

GP regression (prediction)

Interpolation/prediction at target locations:

(Noise-free observations) Observe {(xi , f (xi)), i = 1, . . . , n}.
(Noisy observations) Observe {(xi , yi), i = 1, . . . , n}.
Want to predict f∗ = {f (x∗1), . . . , f (x∗k)} at x∗.

(
f
f∗

)
|X,X∗ ∼ N

((
0
0

)
,

(
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

))
f∗|f,X,X∗ ∼ N

(
K (X∗,X)[K (X,X)]−1f,

K (X∗,X∗)− K (X∗,X)[K (X,X)]−1K (X,X∗)
)

data

noise-free

Prediction with

(
y
f∗

)
|X,X∗ ∼ N

((
0
0

)
,

(
K (X,X) + σ2

ε In K (X,X∗)
K (X∗,X) K (X∗,X∗)

))
f∗|y,X,X∗ ∼ N

(
K (X∗,X)[K (X,X) + σ2

ε In]−1y,

K (X∗,X∗)− K (X∗,X)[K (X,X) + σ2
ε In]−1K (X,X∗)

)

data

with noisy

Prediction

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 5 / 22

GP regression (prediction)

Interpolation/prediction at target locations:

(Noise-free observations) Observe {(xi , f (xi)), i = 1, . . . , n}.
(Noisy observations) Observe {(xi , yi), i = 1, . . . , n}.
Want to predict f∗ = {f (x∗1), . . . , f (x∗k)} at x∗.

(
f
f∗

)
|X,X∗ ∼ N

((
0
0

)
,

(
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

))
f∗|f,X,X∗ ∼ N

(
K (X∗,X)[K (X,X)]−1f,

K (X∗,X∗)− K (X∗,X)[K (X,X)]−1K (X,X∗)
)

data

noise-free

Prediction with

(
y
f∗

)
|X,X∗ ∼ N

((
0
0

)
,

(
K (X,X) + σ2

ε In K (X,X∗)
K (X∗,X) K (X∗,X∗)

))
f∗|y,X,X∗ ∼ N

(
K (X∗,X)[K (X,X) + σ2

ε In]−1y,

K (X∗,X∗)− K (X∗,X)[K (X,X) + σ2
ε In]−1K (X,X∗)

)

data

with noisy

Prediction

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 5 / 22

GP regression (prediction)

Interpolation/prediction at target locations:

(Noise-free observations) Observe {(xi , f (xi)), i = 1, . . . , n}.
(Noisy observations) Observe {(xi , yi), i = 1, . . . , n}.
Want to predict f∗ = {f (x∗1), . . . , f (x∗k)} at x∗.

(
f
f∗

)
|X,X∗ ∼ N

((
0
0

)
,

(
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

))
f∗|f,X,X∗ ∼ N

(
K (X∗,X)[K (X,X)]−1f,

K (X∗,X∗)− K (X∗,X)[K (X,X)]−1K (X,X∗)
)

data

noise-free

Prediction with

(
y
f∗

)
|X,X∗ ∼ N

((
0
0

)
,

(
K (X,X) + σ2

ε In K (X,X∗)
K (X∗,X) K (X∗,X∗)

))
f∗|y,X,X∗ ∼ N

(
K (X∗,X)[K (X,X) + σ2

ε In]−1y,

K (X∗,X∗)− K (X∗,X)[K (X,X) + σ2
ε In]−1K (X,X∗)

)

data

with noisy

Prediction

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 5 / 22

GP regression (prediction)

Some cool things we’ve noticed:

f, f∗, y, y∗ are all jointly Gaussian.

GP regression gives us interval (distributional) predictions for free.

Prediction using noise-free vs. noisy data:

Which situation is more likely in practice?

The “nugget” σ2
ε In:

Arises due to measurement error or high-frequency behavior.

Provides numerical stability and regularization.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 6 / 22

Illustrating GP regression

TRUTH: τ 2 = 1, `2 = 1, σ2
ε = 0.01.

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

Sample {(xi , yi), i = 1, . . . 20}

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

Posterior mean of f∗|y

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

95% prediction interval for f∗|y

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

Fitting GP with `2 = 10:

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

Fitting GP with `2 = 0.1:

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

Fitting GP with σ2
ε = 1:

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

Illustrating GP regression

Fitting GP with σ2
ε = 0.0001:

0 2 4 6 8 10

−
2

−
1

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7 / 22

GPs and Bayesian linear regression

Assume f (xi) is linear in p-dimensional feature vector of xi :

f (xi) = φ(xi)
′w

= φ′iw

Usual Bayesian regression setup for φ:

yi |X ind∼ N (φ′iw, σ
2
ε) (likelihood)

w ∼ N (0,Σ) (prior)

w|y,X ∼ N (ŵ,A−1) (posterior)

f ∗|y,X, x∗ ∼ N ((φ∗)′ŵ, (φ∗)′A−1φ∗) (posterior predictive)

where

ŵ = A−1Φy/σ2
ε .

A = ΦΦ′/σ2
ε + Σ−1.

Φ = p × n matrix stacking φi , i = 1, . . . , n columnwise.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 8 / 22

GPs and Bayesian linear regression

Assume f (xi) is linear in p-dimensional feature vector of xi :

f (xi) = φ(xi)
′w

= φ′iw

Usual Bayesian regression setup for φ:

yi |X ind∼ N (φ′iw, σ
2
ε) (likelihood)

w ∼ N (0,Σ) (prior)

w|y,X ∼ N (ŵ,A−1) (posterior)

f ∗|y,X, x∗ ∼ N ((φ∗)′ŵ, (φ∗)′A−1φ∗) (posterior predictive)

where

ŵ = A−1Φy/σ2
ε .

A = ΦΦ′/σ2
ε + Σ−1.

Φ = p × n matrix stacking φi , i = 1, . . . , n columnwise.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 8 / 22

GPs and Bayesian linear regression

After some matrix algebra (Woodbury identity!), we can write this as:

f ∗|y,X, x∗ ∼ N
(

(φ∗)′ΣΦ[Φ′ΣΦ + σ2
ε I]−1y,

(φ∗)′Σφ∗ − (φ∗)′ΣΦ[Φ′ΣΦ + σ2
ε I]−1Φ′Σφ∗

)

Taking k(xi , xj) = φ(xi)′Σφ(xj), we get familiar GP prediction expression.

Thus {Bayesian regression} ⊂ {Gaussian processes}.
{Gaussian processes} ⊂ {Bayesian regression}?

“Kernel trick”: feature vectors φ only enter as inner products Φ′ΣΦ, (φ∗)′ΣΦ, or
(φ∗)′Σφ∗.

Kernel (covariance function) k(·, ·) spares us from ever calculating φ(x).

Where have we seen this before?

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 9 / 22

GPs and Bayesian linear regression

After some matrix algebra (Woodbury identity!), we can write this as:

f ∗|y,X, x∗ ∼ N
(

(φ∗)′ΣΦ[Φ′ΣΦ + σ2
ε I]−1y,

(φ∗)′Σφ∗ − (φ∗)′ΣΦ[Φ′ΣΦ + σ2
ε I]−1Φ′Σφ∗

)

Taking k(xi , xj) = φ(xi)′Σφ(xj), we get familiar GP prediction expression.

Thus {Bayesian regression} ⊂ {Gaussian processes}.
{Gaussian processes} ⊂ {Bayesian regression}?

“Kernel trick”: feature vectors φ only enter as inner products Φ′ΣΦ, (φ∗)′ΣΦ, or
(φ∗)′Σφ∗.

Kernel (covariance function) k(·, ·) spares us from ever calculating φ(x).

Where have we seen this before?

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 9 / 22

Covariance functions

Common choices:

k(xi , xj) = τ 2 exp

(
−||xi − xj ||

2`

)
(exponential)

k(xi , xj) = τ 2 exp

(
−||xi − xj ||2

2`2

)
(squared exponential)

k(xi , xj) = τ 2

(
1− 3||xi − xj ||

2θ
+
||xi − xj ||3

2θ3

)
1[||xi − xj || ≤ θ] (spherical)

k(xi , xj) =
τ 2

Γ(ν)

(||xi − xj ||
2φ

)ν

Bν(φ||xi − xj ||) (matérn)

k(xi , xj) = σ2 + τ 2(xi − c)′(xj − c) (linear)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 10 / 22

Covariance functions
Properties

Isotrophy (stationarity)

Covariance only depends on distance: k(xi , xj) = c(||xi − xj ||).

Common in many GP applications.

Differentiability

Sample paths f ∼ GP(0, k(·, ·)) may be m times differentiable.

Example of non-differentiable Gaussian Process?

Compact support

For any x1, {x2 : k(x1, x2) 6= 0} is compact.

Provides sparsity in covariance matrix.

Combining covariance functions

Assume k1 and k2 are valid covariance functions:

k = k1 + k2 is a valid covariance function.

k = k1 × k2 is a valid covariance function.

kg = k(g(x1), g(x2)) is a valid covariance function.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 11 / 22

Covariance functions
Properties

Isotrophy (stationarity)

Covariance only depends on distance: k(xi , xj) = c(||xi − xj ||).

Common in many GP applications.

Differentiability

Sample paths f ∼ GP(0, k(·, ·)) may be m times differentiable.

Example of non-differentiable Gaussian Process?

Compact support

For any x1, {x2 : k(x1, x2) 6= 0} is compact.

Provides sparsity in covariance matrix.

Combining covariance functions

Assume k1 and k2 are valid covariance functions:

k = k1 + k2 is a valid covariance function.

k = k1 × k2 is a valid covariance function.

kg = k(g(x1), g(x2)) is a valid covariance function.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 11 / 22

Covariance functions
Properties

Isotrophy (stationarity)

Covariance only depends on distance: k(xi , xj) = c(||xi − xj ||).

Common in many GP applications.

Differentiability

Sample paths f ∼ GP(0, k(·, ·)) may be m times differentiable.

Example of non-differentiable Gaussian Process?

Compact support

For any x1, {x2 : k(x1, x2) 6= 0} is compact.

Provides sparsity in covariance matrix.

Combining covariance functions

Assume k1 and k2 are valid covariance functions:

k = k1 + k2 is a valid covariance function.

k = k1 × k2 is a valid covariance function.

kg = k(g(x1), g(x2)) is a valid covariance function.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 11 / 22

Covariance functions
Properties

Isotrophy (stationarity)

Covariance only depends on distance: k(xi , xj) = c(||xi − xj ||).

Common in many GP applications.

Differentiability

Sample paths f ∼ GP(0, k(·, ·)) may be m times differentiable.

Example of non-differentiable Gaussian Process?

Compact support

For any x1, {x2 : k(x1, x2) 6= 0} is compact.

Provides sparsity in covariance matrix.

Combining covariance functions

Assume k1 and k2 are valid covariance functions:

k = k1 + k2 is a valid covariance function.

k = k1 × k2 is a valid covariance function.

kg = k(g(x1), g(x2)) is a valid covariance function.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 11 / 22

Covariance functions
Properties

Cov. Function Isotropic Times differentiable Compact

Exponential Yes 0 No
Squared exponential Yes ∞ No
Spherical Yes 0 Yes
Matérn Yes ν No
Linear No ∞ No

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 12 / 22

Parameter estimation and inference

Marginal likelihood:

p(y|θ) =

∫
p(y|f, θ)p(f|θ)df

y|θ ∼ N (0,Kθ(X,X) + σ2
ε I)

Thus

log(p(y|θ)) = −1

2
y′Kyy − 1

2
log |Ky |+ c

∂

∂θj
log(p(y|θ)) =

1

2
y′K−1

y

(
∂

∂θj
Ky

)
K−1

y y − 1

2
tr

(
K−1

y

∂

∂θj
Ky

)
where Ky = Kθ(X,X) + σ2

ε I.

Can use any gradient-based method to maximize (log) marginal likelihood.

Non-convex, so typically multiple solutions exist.

Can also be fully Bayesian: supply prior p(θ) and sample posterior p(θ|y).

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 13 / 22

Parameter estimation and inference

Marginal likelihood:

p(y|θ) =

∫
p(y|f, θ)p(f|θ)df

y|θ ∼ N (0,Kθ(X,X) + σ2
ε I)

Thus

log(p(y|θ)) = −1

2
y′Kyy − 1

2
log |Ky |+ c

∂

∂θj
log(p(y|θ)) =

1

2
y′K−1

y

(
∂

∂θj
Ky

)
K−1

y y − 1

2
tr

(
K−1

y

∂

∂θj
Ky

)
where Ky = Kθ(X,X) + σ2

ε I.

Can use any gradient-based method to maximize (log) marginal likelihood.

Non-convex, so typically multiple solutions exist.

Can also be fully Bayesian: supply prior p(θ) and sample posterior p(θ|y).

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 13 / 22

Parameter estimation and inference

Marginal likelihood:

p(y|θ) =

∫
p(y|f, θ)p(f|θ)df

y|θ ∼ N (0,Kθ(X,X) + σ2
ε I)

Thus

log(p(y|θ)) = −1

2
y′Kyy − 1

2
log |Ky |+ c

∂

∂θj
log(p(y|θ)) =

1

2
y′K−1

y

(
∂

∂θj
Ky

)
K−1

y y − 1

2
tr

(
K−1

y

∂

∂θj
Ky

)
where Ky = Kθ(X,X) + σ2

ε I.

Can use any gradient-based method to maximize (log) marginal likelihood.

Non-convex, so typically multiple solutions exist.

Can also be fully Bayesian: supply prior p(θ) and sample posterior p(θ|y).

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 13 / 22

Latent GPs

We can generalize the observed data process yi = f (xi) + εi by writing:

yi ∼ p(y |f (xi)).

For example:

Binary classification
P(yi = 1|f (xi)) = σ(f (xi))

k-class classification

P(yi = cj |f1(xi), . . . , fk(xi)) =
exp(fj(xi))∑k

j′=1 exp(fj′(xi))

Inhomogeneous Poisson process

y(t) ∼ PP(λ(t))

log(λ(t)) = f (t)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 14 / 22

Latent GPs

We can generalize the observed data process yi = f (xi) + εi by writing:

yi ∼ p(y |f (xi)).

For example:

Binary classification
P(yi = 1|f (xi)) = σ(f (xi))

k-class classification

P(yi = cj |f1(xi), . . . , fk(xi)) =
exp(fj(xi))∑k

j′=1 exp(fj′(xi))

Inhomogeneous Poisson process

y(t) ∼ PP(λ(t))

log(λ(t)) = f (t)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 14 / 22

Latent GPs

We can generalize the observed data process yi = f (xi) + εi by writing:

yi ∼ p(y |f (xi)).

For example:

Binary classification
P(yi = 1|f (xi)) = σ(f (xi))

k-class classification

P(yi = cj |f1(xi), . . . , fk(xi)) =
exp(fj(xi))∑k

j′=1 exp(fj′(xi))

Inhomogeneous Poisson process

y(t) ∼ PP(λ(t))

log(λ(t)) = f (t)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 14 / 22

Latent GPs

We can generalize the observed data process yi = f (xi) + εi by writing:

yi ∼ p(y |f (xi)).

For example:

Binary classification
P(yi = 1|f (xi)) = σ(f (xi))

k-class classification

P(yi = cj |f1(xi), . . . , fk(xi)) =
exp(fj(xi))∑k

j′=1 exp(fj′(xi))

Inhomogeneous Poisson process

y(t) ∼ PP(λ(t))

log(λ(t)) = f (t)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 14 / 22

Example: Binary GP classification

xi
iid∼ Unif(0, 10)

f (x) ∼ GP(0, k(·, ·)), with k(xi , xj) = exp(−(xi − xj)
2/4)

yi
ind∼ Bern

(
1

1 + exp(−f (xi))

)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 15 / 22

Example: Binary GP classification

xi
iid∼ Unif(0, 10)

f (x) ∼ GP(0, k(·, ·)), with k(xi , xj) = exp(−(xi − xj)
2/4)

yi
ind∼ Bern

(
1

1 + exp(−f (xi))

)

0 2 4 6 8 10

−
2

0
1

2

x

f(
x)

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 15 / 22

Example: Binary GP classification

xi
iid∼ Unif(0, 10)

f (x) ∼ GP(0, k(·, ·)), with k(xi , xj) = exp(−(xi − xj)
2/4)

yi
ind∼ Bern

(
1

1 + exp(−f (xi))

)

0 2 4 6 8 10

0.
0

0.
4

0.
8

x

σ(
f(x

))

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 15 / 22

Example: Binary GP classification

xi
iid∼ Unif(0, 10)

f (x) ∼ GP(0, k(·, ·)), with k(xi , xj) = exp(−(xi − xj)
2/4)

yi
ind∼ Bern

(
1

1 + exp(−f (xi))

)

0 2 4 6 8 10

0.
0

0.
4

0.
8

x

σ(
f(x

))

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 15 / 22

Example: Binary GP classification

xi
iid∼ Unif(0, 10)

f (x) ∼ GP(0, k(·, ·)), with k(xi , xj) = exp(−(xi − xj)
2/4)

yi
ind∼ Bern

(
1

1 + exp(−f (xi))

)

0 2 4 6 8 10

0.
0

0.
4

0.
8

x

σ(
f(x

))

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 15 / 22

Example: Binary GP classification

xi
iid∼ Unif(0, 10)

f (x) ∼ GP(0, k(·, ·)), with k(xi , xj) = exp(−(xi − xj)
2/4)

yi
ind∼ Bern

(
1

1 + exp(−f (xi))

)

0 2 4 6 8 10

0.
0

0.
4

0.
8

x

σ(
f(x

))

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 15 / 22

Inference for latent GP models

Two distributions typically of interest

f|y,X ∝ P(y|f,X)P(f|X) (posterior)

f ∗|y,X =

∫
P(f ∗|f,X, x∗)P(f|y,X)df (posterior predictive for latent variable)

When P(y |f) is not Gaussian, we lack closed-form expression for posterior.

Approaches:

MCMC (easily extends to parameter inference as well).

Laplace approximation:

Find posterior mode f̂ (using any gradient-based optimizer).
Use Normal approximation to posterior

P(f|y,X) ≈ N (f̂,H)

where H is the negative Hessian of the posterior evaluated at f̂.

Expectation Propagation, variational approximation.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 16 / 22

Inference for latent GP models

Two distributions typically of interest

f|y,X ∝ P(y|f,X)P(f|X) (posterior)

f ∗|y,X =

∫
P(f ∗|f,X, x∗)P(f|y,X)df (posterior predictive for latent variable)

When P(y |f) is not Gaussian, we lack closed-form expression for posterior.
Approaches:

MCMC (easily extends to parameter inference as well).

Laplace approximation:

Find posterior mode f̂ (using any gradient-based optimizer).
Use Normal approximation to posterior

P(f|y,X) ≈ N (f̂,H)

where H is the negative Hessian of the posterior evaluated at f̂.

Expectation Propagation, variational approximation.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 16 / 22

Applications: climate reconstruction
[M. Tingley and P. Huybers, “Recent temperature extremes at high northern latitudes unprecedented in the past 600 years.” Nature, 2013]

8 Supplementary Figures

0

o

 90 o
E

 1
80

o W

 90 o
W

 8
0

o N

 6
5

o N
 5
0

o N

MXD

Ice δ18O

Varves
CRU
Target

1400 1500 1600 1700 1800 1900 2000

50

100

C
ou

nt

Year

(b)

(a)

1850 1900 1950 2000

100

200

Year

C
ou

nt

(c)

Figure S.1: Data availability in space and time. (a) Locations of the data time series. In the
legend, MXD refers to the tree ring density series, and Target refers to locations where temperature
anomalies are inferred but where there are no observations. The two areas outlined in black are
used to assess anomalous warmth in 2010. (b) and (c) The number and type of proxy (b) and
instrumental observations (c) available at each year.

27

WWW.NATURE.COM/NATURE | 27

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature11969

[Tingley & Huybers]

Data

Oi : temperature data for year
i from location set XO .

RI : “proxy” data for year i
from location set XR .

Model

TO
i : latent true temperature

for year i at locations XO .

Oi = AOTO
i .

Ri = ARTR
i .

TR
i : latent true temperature

for year i at locations XR .

Ti = (TO
i TR

i)

Ti = ΓTi−1 + ηi .

η ∼ GP.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 17 / 22

Applications: climate reconstruction
[M. Tingley and P. Huybers, “Recent temperature extremes at high northern latitudes unprecedented in the past 600 years.” Nature, 2013]

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

P
os

te
rio

r
M

ed
ia

n

Year = 1453

Proxy
Inst.
Both

−4

−2

0

2

4

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

90
%

 C
re

di
bl

e
In

te
rv

al

1

2

3

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

Year = 1601

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

Year = 1642

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

T
em

perature in °C

Year = 1695

0

o

 90 o
E

 1
80

o W

 90 o
W

0

o

 90 o
E

 1
80

o W

 90 o
W

W
idth in °C

Figure S.8: Temperature anomaly estimates and uncertainties for four years. The top row plots the posterior median of the temperature
distribution for each location for 1453, 1601, 1642, and 1695, respectively, while the bottom row plots the widths of the corresponding
90% credible intervals. In the bottom row, symbols denote that a proxy, and/or instrumental observation is available for that location
and year.

33

WWW.NATURE.COM/NATURE | 33

doi:10.1038/nature11969 SUPPLEMENTARY INFORMATIONRESEARCH

[Tingley & Huybers]

Data

Oi : temperature data for year
i from location set XO .

RI : “proxy” data for year i
from location set XR .

Model

TO
i : latent true temperature

for year i at locations XO .

Oi = AOTO
i .

Ri = ARTR
i .

TR
i : latent true temperature

for year i at locations XR .

Ti = (TO
i TR

i)

Ti = ΓTi−1 + ηi .

η ∼ GP.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 17 / 22

Applications: species population mapping
[A. Chakraborty et al., “Modeling large scale species abundance with latent spatial processes.” Annals of Applied Statistics, 2010.]

Data and model:

Y (A): count of species in region A.

Y (A) ∼ Pois(µ(A)).

µ(A) =
∫
A
λ(s)ds.

log(λ(s)) = f(s) + Z(s)′β.

f ∼ GP, Z vector of covariates for location s (e.g. altitude, etc).
SPATIAL MODELING FOR SPECIES ABUNDANCE 19

Fig. 6. Posterior mean spatial effects (θ) for Protea punctata (PRPUNC) and Protea
repens (PRREPE). These effects offer local adjustment to potential abundance. Cells with
values greater than zero represent regions with larger than expected populations, conditional
on the other covariates.

The threshold 0.30 was used to provide an 8 nearest neighbor structure
for most of the cells. However, for boundary cells, the number of neighbors
varies from 3 to 6. The parallelization algorithm was implemented inside R
(http://www.r-project.org) using l= 11. The run time for an individual
species was about 9000 iterations/day. The outputs presented below are cre-
ated by first running 12500 iterations of MCMC, discarding the initial 7500
samples, and thinning the rest at every fifth sample. The β’s were quick to
converge, but the α sequences were highly autocorrelated and moved more
slowly in the space.

Here we consider two species, Protea punctata (PRPUNC) and Protea
repens (PRREPE). A summary of the model output is presented through
the following table and diagrams. Table 1 provides the mean covariate effects
for both species along with the 95% equal tail credible interval width (in
parentheses). Considering 95% equal tail credible interval, all the covariate
effects are significant except Fert1 for P. punctata.

The mean posterior spatial effects are shown in Figure 6. Note that the
spatial effects for the two species have quite different patterns, with Protea
repens having a region of low values in the northeast and larger values
elsewhere, while Protea punctata is more even across the landscape, but
with lower values toward the edges of the CFR. These surfaces capture the
spatial variability in abundance that is not explained by the other covariates
within the model. This suggests that the covariates predict higher abundance
of P. repens in the northwest than what was observed, perhaps indicating
some unobserved limiting factor (such as unsuitable soils, more extreme
seasonality in rainfall, or dispersal limitations). Similarly for P. punctata,
the covariates may over-predict abundances at the edges of the CFR where
many environmental factors change as one transitions to other biome types.

[Chakraborty et al.]

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 18 / 22

Applications: computer experiments
[B. Gramacy and H. Lee, “Bayesian treed Gaussian process models with an application to computer modeling.” Journal of the American Statistical

Association, 2008.]

NASA uses computer
experiments to simulate
the force applied to a
vehicle entering the
atmosphere: g(s, α, β).

g computed by fluid
dynamics simulation;
each evaluation takes
∼ 20 hours.

Build GP emulator
f ≈ g given 3000
observations of g .

makes sense because the physics in the simulator comes from two completely different

regimes, a subsonic regime for speeds less than Mach one, and a supersonic regime for

speeds greater than Mach one. What happens close to and along the boundary is the

most difficult part of the simulation.

Mach (speed)

1

2

3

4
5

6

alpha (angle of attack)

0

10

20

30

lift

0.0

0.5

1.0

1.5

lift=f(mach,alpha,beta=0,)

Mach (speed)

1

2

3

4
5

6

alpha (angle of attack)

0

10

20

30

lift

0.0

0.5

1.0

lift=f(mach,alpha,beta=0.5)

Mach (speed)

1

2

3

4
5

6

alpha (angle of attack)

0

10

20

30

lift

0.0

0.5

1.0

lift=f(mach,alpha,beta=1)

Mach (speed)

1

2

3

4
5

6

alpha (angle of attack)

0

10

20

30

lift

0.0

0.5

1.0

lift=f(mach,alpha,beta=2)

Mach (speed)

1

2

3

4
5

6

alpha (angle of attack)

0

10

20

30

lift

0.0

0.5

1.0

lift=f(mach,alpha,beta=3)

Mach (speed)

1

2

3

4
5

6

alpha (angle of attack)

0

10

20

30

lift

0.0

0.5

1.0

lift=f(mach,alpha,beta=4)

Figure 1: Interpolation of lift by speed and angle of attack for all sideslip levels. Note
that for levels 0.5 and 3 (center), Mach ranges only in (1, 5) and (1.2, 2.2).

The upper-left plot in Figure 1 shows an interpolation of the simulator output for

the lift surface as a function of speed and angle of attack, when the sideslip angle is zero.

The primary feature of this plot is the large ridge which appears at Mach one and larger

angles of attack. The transition from subsonic to supersonic is a sharp one, and it is not

clear whether one would want to use a continuous model or to introduce a discontinuity.

While much of the surface is quite smooth, parts of the surface, particularly around Mach

one, are less smooth. So it is clear that the standard computer modeling assumption

6

[Gramacy and Lee]

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 19 / 22

Applications: Bayesian optimization
[J. Snoek et al. “Practical Bayesian optimization of machine learning algorithms.” NIPS, 2012.]

Bayesian optimization helps tune hyperparameters for ML algorithms.

f (x): performance metric (e.g. MSPE) for ML algorithm with tuning
parameters = x.

f ∼ GP.

Expected improvement in f at x∗:

Denote f (x∗)|f ∼ N (µ(x∗; X, y), σ(x∗; X, y)).

γ(x∗) = (f (xbest)− µ(x∗; X, y))/σ(x∗; X, y), where xbest = argminxi f (xi).

EI (x∗) = γ(x∗)[1 + σ(x∗; X, y)Φ(γ(x∗))]

0 10 20 30 40 50

0

5

10

15

20

25

30

35

M
in

 F
u

n
c
ti
o

n
 V

a
lu

e

Function evaluations

GP EI Opt

GP EI MCMC

GP−UCB

TPA

(a)

0 20 40 60 80 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
in

 F
u
n
c
ti
o
n
 V

a
lu

e

Function Evaluations

GP EI MCMC

GP EI Opt

GP EI per Sec

Tree Parzen Algorithm

(b)

5 10 15 20 25 30 35 40 45

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
in

 F
u
n

c
ti
o

n
 V

a
lu

e

Minutes

GP EI MCMC

GP EI per Second

(c)
Figure 3: Comparisons on the Branin-Hoo function (3a) and training logistic regression on MNIST (3b). (3c)
shows GP EI MCMC and GP EI per Second from (3b), but in terms of time elapsed.

0 10 20 30 40 50
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 F
u

n
c
ti
o
n

 V
a

lu
e

Function evaluations

GP EI MCMC

GP EI per second

GP EI Opt

Random Grid Search

3x GP EI MCMC

5x GP EI MCMC

10x GP EI MCMC

(a)

0 2 4 6 8 10 12
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 f
u

n
c
ti
o

n
 v

a
lu

e

Time (Days)

GP EI MCMC

GP EI per second

GP EI Opt

3x GP EI MCMC

5x GP EI MCMC

10x GP EI MCMC

(b)

0 10 20 30 40 50
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 F
u

n
c
ti
o
n

 V
a

lu
e

Function evaluations

3x GP EI MCMC (On grid)

5x GP EI MCMC (On grid)

3x GP EI MCMC (Off grid)

5x GP EI MCMC (Off grid)

(c)

Figure 4: Different strategies of optimization on the Online LDA problem compared in terms of function
evaluations (4a), walltime (4b) and constrained to a grid or not (4c).

optimization techniques [2] that is defined over x ∈ R2 where 0 ≤ x1 ≤ 15 and−5 ≤ x2 ≤ 15. We
also compare to TPA on a logistic regression classification task on the popular MNIST data. The
algorithm requires choosing four hyperparameters, the learning rate for stochastic gradient descent,
on a log scale from 0 to 1, the `2 regularization parameter, between 0 and 1, the mini batch size,
from 20 to 2000 and the number of learning epochs, from 5 to 2000. Each algorithm was run on the
Branin-Hoo and logistic regression problems 100 and 10 times respectively and mean and standard
error are reported. The results of these analyses are presented in Figures 3a and 3b in terms of
the number of times the function is evaluated. On Branin-Hoo, integrating over hyperparameters is
superior to using a point estimate and the GP EI significantly outperforms TPA, finding the minimum
in less than half as many evaluations, in both cases. For logistic regression, 3b and 3c show that
although EI per second is less efficient in function evaluations it outperforms standard EI in time.

4.2 Online LDA

Latent Dirichlet Allocation (LDA) is a directed graphical model for documents in which words
are generated from a mixture of multinomial “topic” distributions. Variational Bayes is a popular
paradigm for learning and, recently, Hoffman et al. [17] proposed an online learning approach in
that context. Online LDA requires 2 learning parameters, τ0 and κ, that control the learning rate
ρt = (τ0 + t)−κ used to update the variational parameters of LDA based on the tth minibatch of
document word count vectors. The size of the minibatch is also a third parameter that must be
chosen. Hoffman et al. [17] relied on an exhaustive grid search of size 6× 6× 8, for a total of 288
hyperparameter configurations.

We used the code made publically available by Hoffman et al. [17] to run experiments with online
LDA on a collection of Wikipedia articles. We downloaded a random set of 249 560 articles, split
into training, validation and test sets of size 200 000, 24 560 and 25 000 respectively. The documents
are represented as vectors of word counts from a vocabulary of 7702 words. As reported in Hoffman
et al. [17], we used a lower bound on the per word perplexity of the validation set documents as the
performance measure. One must also specify the number of topics and the hyperparameters η for
the symmetric Dirichlet prior over the topic distributions and α for the symmetric Dirichlet prior
over the per document topic mixing weights. We followed Hoffman et al. [17] and used 100 topics
and η = α = 0.01 in our experiments in order to emulate their analysis and repeated exactly the grid
search reported in the paper3. Each online LDA evaluation generally took between five to ten hours
to converge, thus the grid search requires approximately 60 to 120 processor days to complete.

3i.e. the only difference was the randomly sampled collection of articles in the data set and the choice of the
vocabulary. We ran each evaluation for 10 hours or until convergence.

6

[Snoek et al.]

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 20 / 22

Applications: Bayesian optimization
[J. Snoek et al. “Practical Bayesian optimization of machine learning algorithms.” NIPS, 2012.]

Bayesian optimization helps tune hyperparameters for ML algorithms.

f (x): performance metric (e.g. MSPE) for ML algorithm with tuning
parameters = x.

f ∼ GP.

Expected improvement in f at x∗:

Denote f (x∗)|f ∼ N (µ(x∗; X, y), σ(x∗; X, y)).

γ(x∗) = (f (xbest)− µ(x∗; X, y))/σ(x∗; X, y), where xbest = argminxi f (xi).

EI (x∗) = γ(x∗)[1 + σ(x∗; X, y)Φ(γ(x∗))]

0 10 20 30 40 50

0

5

10

15

20

25

30

35

M
in

 F
u

n
c
ti
o

n
 V

a
lu

e

Function evaluations

GP EI Opt

GP EI MCMC

GP−UCB

TPA

(a)

0 20 40 60 80 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
in

 F
u
n
c
ti
o
n
 V

a
lu

e

Function Evaluations

GP EI MCMC

GP EI Opt

GP EI per Sec

Tree Parzen Algorithm

(b)

5 10 15 20 25 30 35 40 45

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
in

 F
u
n

c
ti
o

n
 V

a
lu

e

Minutes

GP EI MCMC

GP EI per Second

(c)
Figure 3: Comparisons on the Branin-Hoo function (3a) and training logistic regression on MNIST (3b). (3c)
shows GP EI MCMC and GP EI per Second from (3b), but in terms of time elapsed.

0 10 20 30 40 50
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 F
u

n
c
ti
o
n

 V
a

lu
e

Function evaluations

GP EI MCMC

GP EI per second

GP EI Opt

Random Grid Search

3x GP EI MCMC

5x GP EI MCMC

10x GP EI MCMC

(a)

0 2 4 6 8 10 12
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 f
u

n
c
ti
o

n
 v

a
lu

e

Time (Days)

GP EI MCMC

GP EI per second

GP EI Opt

3x GP EI MCMC

5x GP EI MCMC

10x GP EI MCMC

(b)

0 10 20 30 40 50
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 F
u

n
c
ti
o
n

 V
a

lu
e

Function evaluations

3x GP EI MCMC (On grid)

5x GP EI MCMC (On grid)

3x GP EI MCMC (Off grid)

5x GP EI MCMC (Off grid)

(c)

Figure 4: Different strategies of optimization on the Online LDA problem compared in terms of function
evaluations (4a), walltime (4b) and constrained to a grid or not (4c).

optimization techniques [2] that is defined over x ∈ R2 where 0 ≤ x1 ≤ 15 and−5 ≤ x2 ≤ 15. We
also compare to TPA on a logistic regression classification task on the popular MNIST data. The
algorithm requires choosing four hyperparameters, the learning rate for stochastic gradient descent,
on a log scale from 0 to 1, the `2 regularization parameter, between 0 and 1, the mini batch size,
from 20 to 2000 and the number of learning epochs, from 5 to 2000. Each algorithm was run on the
Branin-Hoo and logistic regression problems 100 and 10 times respectively and mean and standard
error are reported. The results of these analyses are presented in Figures 3a and 3b in terms of
the number of times the function is evaluated. On Branin-Hoo, integrating over hyperparameters is
superior to using a point estimate and the GP EI significantly outperforms TPA, finding the minimum
in less than half as many evaluations, in both cases. For logistic regression, 3b and 3c show that
although EI per second is less efficient in function evaluations it outperforms standard EI in time.

4.2 Online LDA

Latent Dirichlet Allocation (LDA) is a directed graphical model for documents in which words
are generated from a mixture of multinomial “topic” distributions. Variational Bayes is a popular
paradigm for learning and, recently, Hoffman et al. [17] proposed an online learning approach in
that context. Online LDA requires 2 learning parameters, τ0 and κ, that control the learning rate
ρt = (τ0 + t)−κ used to update the variational parameters of LDA based on the tth minibatch of
document word count vectors. The size of the minibatch is also a third parameter that must be
chosen. Hoffman et al. [17] relied on an exhaustive grid search of size 6× 6× 8, for a total of 288
hyperparameter configurations.

We used the code made publically available by Hoffman et al. [17] to run experiments with online
LDA on a collection of Wikipedia articles. We downloaded a random set of 249 560 articles, split
into training, validation and test sets of size 200 000, 24 560 and 25 000 respectively. The documents
are represented as vectors of word counts from a vocabulary of 7702 words. As reported in Hoffman
et al. [17], we used a lower bound on the per word perplexity of the validation set documents as the
performance measure. One must also specify the number of topics and the hyperparameters η for
the symmetric Dirichlet prior over the topic distributions and α for the symmetric Dirichlet prior
over the per document topic mixing weights. We followed Hoffman et al. [17] and used 100 topics
and η = α = 0.01 in our experiments in order to emulate their analysis and repeated exactly the grid
search reported in the paper3. Each online LDA evaluation generally took between five to ten hours
to converge, thus the grid search requires approximately 60 to 120 processor days to complete.

3i.e. the only difference was the randomly sampled collection of articles in the data set and the choice of the
vocabulary. We ran each evaluation for 10 hours or until convergence.

6

[Snoek et al.]

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 20 / 22

Applications: Bayesian optimization
[J. Snoek et al. “Practical Bayesian optimization of machine learning algorithms.” NIPS, 2012.]

Bayesian optimization helps tune hyperparameters for ML algorithms.

f (x): performance metric (e.g. MSPE) for ML algorithm with tuning
parameters = x.

f ∼ GP.

Expected improvement in f at x∗:

Denote f (x∗)|f ∼ N (µ(x∗; X, y), σ(x∗; X, y)).

γ(x∗) = (f (xbest)− µ(x∗; X, y))/σ(x∗; X, y), where xbest = argminxi f (xi).

EI (x∗) = γ(x∗)[1 + σ(x∗; X, y)Φ(γ(x∗))]

0 10 20 30 40 50

0

5

10

15

20

25

30

35

M
in

 F
u

n
c
ti
o

n
 V

a
lu

e

Function evaluations

GP EI Opt

GP EI MCMC

GP−UCB

TPA

(a)

0 20 40 60 80 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
in

 F
u
n
c
ti
o
n
 V

a
lu

e

Function Evaluations

GP EI MCMC

GP EI Opt

GP EI per Sec

Tree Parzen Algorithm

(b)

5 10 15 20 25 30 35 40 45

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
in

 F
u
n
c
ti
o
n
 V

a
lu

e

Minutes

GP EI MCMC

GP EI per Second

(c)
Figure 3: Comparisons on the Branin-Hoo function (3a) and training logistic regression on MNIST (3b). (3c)
shows GP EI MCMC and GP EI per Second from (3b), but in terms of time elapsed.

0 10 20 30 40 50
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 F
u

n
c
ti
o

n
 V

a
lu

e

Function evaluations

GP EI MCMC

GP EI per second

GP EI Opt

Random Grid Search

3x GP EI MCMC

5x GP EI MCMC

10x GP EI MCMC

(a)

0 2 4 6 8 10 12
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 f
u

n
c
ti
o

n
 v

a
lu

e

Time (Days)

GP EI MCMC

GP EI per second

GP EI Opt

3x GP EI MCMC

5x GP EI MCMC

10x GP EI MCMC

(b)

0 10 20 30 40 50
1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

M
in

 F
u

n
c
ti
o

n
 V

a
lu

e

Function evaluations

3x GP EI MCMC (On grid)

5x GP EI MCMC (On grid)

3x GP EI MCMC (Off grid)

5x GP EI MCMC (Off grid)

(c)

Figure 4: Different strategies of optimization on the Online LDA problem compared in terms of function
evaluations (4a), walltime (4b) and constrained to a grid or not (4c).

optimization techniques [2] that is defined over x ∈ R2 where 0 ≤ x1 ≤ 15 and−5 ≤ x2 ≤ 15. We
also compare to TPA on a logistic regression classification task on the popular MNIST data. The
algorithm requires choosing four hyperparameters, the learning rate for stochastic gradient descent,
on a log scale from 0 to 1, the `2 regularization parameter, between 0 and 1, the mini batch size,
from 20 to 2000 and the number of learning epochs, from 5 to 2000. Each algorithm was run on the
Branin-Hoo and logistic regression problems 100 and 10 times respectively and mean and standard
error are reported. The results of these analyses are presented in Figures 3a and 3b in terms of
the number of times the function is evaluated. On Branin-Hoo, integrating over hyperparameters is
superior to using a point estimate and the GP EI significantly outperforms TPA, finding the minimum
in less than half as many evaluations, in both cases. For logistic regression, 3b and 3c show that
although EI per second is less efficient in function evaluations it outperforms standard EI in time.

4.2 Online LDA

Latent Dirichlet Allocation (LDA) is a directed graphical model for documents in which words
are generated from a mixture of multinomial “topic” distributions. Variational Bayes is a popular
paradigm for learning and, recently, Hoffman et al. [17] proposed an online learning approach in
that context. Online LDA requires 2 learning parameters, τ0 and κ, that control the learning rate
ρt = (τ0 + t)−κ used to update the variational parameters of LDA based on the tth minibatch of
document word count vectors. The size of the minibatch is also a third parameter that must be
chosen. Hoffman et al. [17] relied on an exhaustive grid search of size 6× 6× 8, for a total of 288
hyperparameter configurations.

We used the code made publically available by Hoffman et al. [17] to run experiments with online
LDA on a collection of Wikipedia articles. We downloaded a random set of 249 560 articles, split
into training, validation and test sets of size 200 000, 24 560 and 25 000 respectively. The documents
are represented as vectors of word counts from a vocabulary of 7702 words. As reported in Hoffman
et al. [17], we used a lower bound on the per word perplexity of the validation set documents as the
performance measure. One must also specify the number of topics and the hyperparameters η for
the symmetric Dirichlet prior over the topic distributions and α for the symmetric Dirichlet prior
over the per document topic mixing weights. We followed Hoffman et al. [17] and used 100 topics
and η = α = 0.01 in our experiments in order to emulate their analysis and repeated exactly the grid
search reported in the paper3. Each online LDA evaluation generally took between five to ten hours
to converge, thus the grid search requires approximately 60 to 120 processor days to complete.

3i.e. the only difference was the randomly sampled collection of articles in the data set and the choice of the
vocabulary. We ran each evaluation for 10 hours or until convergence.

6

[Snoek et al.]

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 20 / 22

Further challenges: non-stationarity

How reasonable is stationarity in practice?

Boundary effects.

Mean processes and trends.

Models for non-stationary GPs.

Basis functions: µ(x) =
∑J

j=1 wjmj(x).

Local approximations and GP trees.

Dimension expansion: assume in some additional dimensions z, there exists
stationary GP f (x, z).

Warping: assume there exists g such that f (g(x)) is stationary.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 21 / 22

Further challenges: non-stationarity

How reasonable is stationarity in practice?

Boundary effects.

Mean processes and trends.

Models for non-stationary GPs.

Basis functions: µ(x) =
∑J

j=1 wjmj(x).

Local approximations and GP trees.

Dimension expansion: assume in some additional dimensions z, there exists
stationary GP f (x, z).

Warping: assume there exists g such that f (g(x)) is stationary.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 21 / 22

Further challenges: computation

Likelihood calculations and predictions require O(n3) time and O(n2) memory.

Simple GP implementations fail on small(ish) (n > 10000) data sets!

Methods for reducing computational complexity:

Sparsity, including covariance tapering and GMRF approximations to f .

Structured covariance models (e.g. Kronecker, Toeplitz).

Low rank covariance models (e.g. inducing points, basis functions).

Likelihood approximations and approximate inference.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 22 / 22

Further challenges: computation

Likelihood calculations and predictions require O(n3) time and O(n2) memory.

Simple GP implementations fail on small(ish) (n > 10000) data sets!

Methods for reducing computational complexity:

Sparsity, including covariance tapering and GMRF approximations to f .

Structured covariance models (e.g. Kronecker, Toeplitz).

Low rank covariance models (e.g. inducing points, basis functions).

Likelihood approximations and approximate inference.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 22 / 22

