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What are Gaussian processes?

GPs let us do Bayesian inference on functions. Using GPs we can:

@ Interpolate spatial data

@ Forecast time series

@ Represent latent surfaces for classification, point processes, etc.
@ Emulate likelihoods and complex, black-box functions
o

Model cool stuff across many scientific disciplines!

Samples from the posterior

[https://pythonhosted.org/infpy/gps.html]
[http://becs.aalto.fi/en/research /bayes/mcmestuff/traindata.jpg]
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Preliminaries

The basic setup:

e Data set {(x;,y;),i =1,...

o Inputs x; € S C RP.
e Outputs y; € R.
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x; ~ p(x)
yi=f(xi)+e€

€ i N(0,02)
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Preliminaries

The basic setup:
o Data set {(x;,v),i=1,...,n}.
o Inputs x; € S C RP.
e Outputs y; € R.

x; ~ p(x)
yi=f(xi)+e€

€ i N(0,02)

Definition
f is a Gaussian process if for any collection X = {x; € S,i =1,...,n},
f(x1)
C [~ N ((X), K(X, X))
f(xn)
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Mean, covariance functions

GPs characterized by mean, covariance functions:
@ Mean function: pu(x).
o WLOG, we can assume p = 0. (Why?)
@ Covariance function k where

[K(X, X)];j = k(xi,x;) = Cov(f(x;), f(x;)).
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Mean, covariance functions

GPs characterized by mean, covariance functions:

@ Mean function: pu(x).
o WLOG, we can assume p = 0. (Why?)
o Covariance function k where

[K(X, X)];j = k(xi,x;) = Cov(f(x;), f(x;)).

Example:
. ox:]2
k(x;,x;) = 7% exp (—%) (squared exponential)
o #=0.01
E;=U.1
_ =1
¥ o
o
[ I I
0 2 4 6 8 10
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GP regression (prediction)

Interpolation/prediction at target locations:
o (Noise-free observations) Observe {(x;, f(x;)),i =1,...,n}.
o (Noisy observations) Observe {(x;,yi),i =1,...,n}.
e Want to predict f* = {f(x]),..., f(x})} at x*.
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GP regression (prediction)

Interpolation/prediction at target locations:
o (Noise-free observations) Observe {(x;, f(x;)),i =1,...,n}.
o (Noisy observations) Observe {(x;,yi),i =1,...,n}.
e Want to predict f* = {f(x]),..., f(x})} at x*.

f - 0 K(X,X)  K(X,X*) Prediction with
(f*) X, X N ((0) ’ (K(X*7X) K(X*7X*))> noise-free

£, X, X* ~ N(K(x*, X)[K (X, X)] 1, data

K(X*, X*) — K(X*, X)[K(X,X)]‘lK(X,X*))
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GP regression (prediction)

Interpolation/prediction at target locations:

o (Noise-free observations) Observe {(x;, f(x;)),i =1,...

o (Noisy observations) Observe {(x;,yi),i =1,...,n}.
e Want to predict f* = {f(x]),..., f(x})} at x*.

()X~ ((0) - (k3 Koex))

FIE XX~ (KX, X)IK (X, X)),

K(X*, X*) — K(X*, X)[K(X,X)]‘lK(X,X*))

() e =2 ((0)- (MG ™ o)

£y, X X~ V(KX XK (X, X) + 021,] 7,

))

Prediction with
noise-free
data

Prediction
with noisy
data

KX, X*) = KX, X)[K(X, X) + 021, K(X, X))
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GP regression (prediction)

Some cool things we've noticed:

o f f* y, y* are all jointly Gaussian.

o GP regression gives us interval (distributional) predictions for free.
Prediction using noise-free vs. noisy data:

@ Which situation is more likely in practice?
The “nugget” o2l,:

@ Arises due to measurement error or high-frequency behavior.

@ Provides numerical stability and regularization.
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lllustrating GP regression

TRUTH: 72 = 1,2 = 1,02 = 0.01.

£(x)

N_
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lllustrating GP regression

Sample {(x;, y;),i =1,...20}

f(x)

N_

— — )
o °
[

o_

-

|

N

| e

0 2 4 6 8 10
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lllustrating GP regression

Posterior mean of f*|y

N_
- - . =g
\o
E o~

T \
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! [ [ [ I. [ |
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X
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lllustrating GP regression

95% prediction interval for f*|y

N_
- - . >4
\o
X o4r7

. .

N

: [ I I I. I ]
0 2 4 6 8 10

X
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lllustrating GP regression

Fitting GP with ¢? = 10:

f(x)

N_

o—/.

— _|

|

AN |

: | I I r* I |
0 2 4 6 8 10
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lllustrating GP regression

Fitting GP with /2 = 0.1:

N_
- 4 .2)"
o’_\
X o -
— _|
|
AN |
: | I I r I |
0 2 4 6 8 10

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015 7/22



lllustrating GP regression

Fitting GP with 02 = 1:
N —_

f(x)
0
|
.
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lllustrating GP regression

Fitting GP with o2 = 0.0001:

N_

— Padh . oo
X oA

H_ \

| |

o \JI

: [ I I I. I ]

0 2 4 6 8 10
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GPs and Bayesian linear regression

Assume f(x;) is linear in p-dimensional feature vector of x;:

f(x;) = o(x;)'w
= giw
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GPs and Bayesian linear regression

Assume f(x;) is linear in p-dimensional feature vector of x;:

f(x;) = o(x;)'w

- G
Usual Bayesian regression setup for ¢:
yil X % N (piw, o2) (likelihood)
w ~ N(0,X) (prior)
wly, X ~ N (W, A™h) (posterior)
F*ly, X, x* ~ N((¢*)W, (¢*) A" ") (posterior predictive)
where
o w=Aldy/s2
e A=00d /o2 + ¥ 1.
@ ® = p X n matrix stacking ¢;,i =1,..., n columnwise.
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GPs and Bayesian linear regression

After some matrix algebra (Woodbury identity!), we can write this as:
£y XX ~ N ((67) ZO[0/T® + o21] 7y,

(¢")E¢" — (¢") TO[®'TD + afl]*lcb’z(;s*)

e Taking k(x;,x;) = ¢(x;)"L¢(x;), we get familiar GP prediction expression.

@ Thus {Bayesian regression} C {Gaussian processes}.

o {Gaussian processes} C {Bayesian regression}?
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GPs and Bayesian linear regression

After some matrix algebra (Woodbury identity!), we can write this as:
£y XX ~ N ((67) ZO[0/T® + o21] 7y,

(¢")E¢" — (¢") TO[®'TD + afl]*lcb’z(;s*)

e Taking k(x;,x;) = ¢(x;)"L¢(x;), we get familiar GP prediction expression.

@ Thus {Bayesian regression} C {Gaussian processes}.

o {Gaussian processes} C {Bayesian regression}?
“Kernel trick”: feature vectors ¢ only enter as inner products ®'Y®, (¢*)'Z®, or
(¢7)zo".

o Kernel (covariance function) k(-,-) spares us from ever calculating ¢(x).

@ Where have we seen this before?
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Covariance functions

Common choices:

k) = 7o

. > (exponential)

) (squared exponential)

L ox:l]2
k(xi,x;) = 72 exp (_|x, il
3llxi — %[l [Ixi = x[°
k(xi,x;) =72 (1— T / 203J
(1=
K(xi, %)) = B
(i) r(v)< 20

Dan Cervone (NYU CDS)

) B, (l[x: — x,[) (matém)

k(xi,x;) = 0 + 73(x; — €)' (x; — €) (linear)

Gaussian Processes

) 1{||x; — xj|| < 6] (spherical)
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Covariance functions

Properties

Isotrophy (stationarity)
@ Covariance only depends on distance: k(x;,x;) = c(||xi — x;])-

@ Common in many GP applications.
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Covariance functions

Properties

Isotrophy (stationarity)
@ Covariance only depends on distance: k(x;,x;) = c(||xi — x;])-
@ Common in many GP applications.

Differentiability
e Sample paths f ~ GP(0, k(-,-)) may be m times differentiable.
@ Example of non-differentiable Gaussian Process?
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Covariance functions

Properties

Isotrophy (stationarity)
@ Covariance only depends on distance: k(x;,x;) = c(||xi — x;])-
@ Common in many GP applications.

Differentiability
e Sample paths f ~ GP(0, k(-,-)) may be m times differentiable.
@ Example of non-differentiable Gaussian Process?

Compact support
@ For any xq, {x2 : k(x1,x2) # 0} is compact.

@ Provides sparsity in covariance matrix.
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Covariance functions

Properties

Isotrophy (stationarity)
@ Covariance only depends on distance: k(x;,x;) = c(||xi — x;])-
@ Common in many GP applications.
Differentiability
e Sample paths f ~ GP(0, k(-,-)) may be m times differentiable.
@ Example of non-differentiable Gaussian Process?
Compact support
@ For any xq, {x2 : k(x1,x2) # 0} is compact.
@ Provides sparsity in covariance matrix.
Combining covariance functions
@ Assume k; and kp are valid covariance functions:
@ k = ki + ky is a valid covariance function.
@ k = ki x ko is a valid covariance function.

o kg = k(g(x1),g(x2)) is a valid covariance function.
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Covariance functions

Properties

Cov. Function Isotropic  Times differentiable  Compact
Exponential Yes 0 No
Squared exponential Yes 00 No
Spherical Yes 0 Yes
Matérn Yes v No
Linear No 00 No
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Parameter estimation and inference

Marginal likelihood:

p(yl0) = / p(yf. 8)p(F|6)dF
y|0 ~ N (0, Ko(X, X) + o2I)
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Parameter estimation and inference

Marginal likelihood:

p(yl0) = / p(yf. 8)p(F|6)dF
y|0 ~ N (0, Ko(X, X) + o2I)

Thus

1 1
log(p(yl0)) = —fy’Kyy — 5 log|Ky[+c

557 ox(p(Y19) = 3K (;;K)K y - Lt (Kylaix)

where K, = Kp(X, X) + o2I.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015

13 /22



Parameter estimation and inference

Marginal likelihood:

p(yl0) = / p(yf. 8)p(F|6)dF
y16 ~ N0, Ko(X, X) + o21)
Thus

1 1
log(p(yl0)) = —fy’Kyy — 5 log|Ky[+c

0 0 1 0
| 4 ’K K, ) K, K, 'K
7 oR(ply19) ~ (86 )K= e (65 )
where K, = Kp(X, X) + o2I.
@ Can use any gradient-based method to maximize (log) marginal likelihood.

@ Non-convex, so typically multiple solutions exist.

@ Can also be fully Bayesian: supply prior p(6) and sample posterior p(fly).
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Latent GPs

We can generalize the observed data process y; = f(x;) + €; by writing:

i ~ p(ylf(x;)).

For example:
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Latent GPs

We can generalize the observed data process y; = f(x;) + €; by writing:

yi ~ p(y|f(xi))-

For example:

@ Binary classification
P(yi = 1]f(xi)) = o(f(xi))
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Latent GPs

We can generalize the observed data process y; = f(x;) + €; by writing:

yi ~ p(y|f(xi))-

For example:

@ Binary classification
P(yi = 1]f(xi)) = o(f(xi))

@ k-class classification

exp(fi(x1))
S g exp(fi(xi))

P(yi = ¢lf(xi), ..., fu(xi)) =
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Latent GPs

We can generalize the observed data process y; = f(x;) + €; by writing:

yi ~ p(y|f(xi))-

For example:

@ Binary classification
P(yi = 1]f(xi)) = o(f(xi))

@ k-class classification

exp(fj(xi))

P(yi = ¢i|fi(xi), ..., f(x;)) =
(v |f1(xi) % (i) Zflzlexp(ﬂv(x,))

@ Inhomogeneous Poisson process

y(t) ~ PP(A(t))
log(A(t)) = £(¢)
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Example: Binary GP classification

xi % Unif(0, 10)
f(x) ~GP(0, k(-,-)), with k(x;,x;) = exp(—(x; — Xj)2/4)

-7 Bern <1)
Vi 1+ exp(—f(x))
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Example: Binary GP classification

xi % Unif(0, 10)
f(x) ~GP(0, k(-,-)), with k(x;,x;) = exp(—(x; — Xj)2/4)

-7 Bern <1)
Vi 1+ exp(—f(x))

f(x)
0
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Example: Binary GP classification

xi % Unif(0, 10)
f(x) ~GP(0, k(-,-)), with k(x;,x;) = exp(—(x; — Xj)2/4)

-7 Bern <1)
Vi 1+ exp(—f(x))

a(f(x))
0.0 04 08
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Example: Binary GP classification

xi % Unif(0, 10)
f(x) ~GP(0, k(-,-)), with k(x;,x;) = exp(—(x; — Xj)2/4)

-7 Bern <1)
Vi 1+ exp(—f(x))

———————————————— R R & X T TEETEEE TEEE
[oe}
~ ©
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X
=
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o
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Example: Binary GP classification

xi % Unif(0, 10)

f(x) ~GP(0, k(-,-)), with k(x;,x;) = exp(—(x; — Xj)2/4)

H ind Bern <1)
Yi 1+ exp(—f(x))

®------- L ------ S EEEEEEETE 000 --0------- *-----
[oe}
~ ©
—~
X
=
b ©O
o
o — Ttttteeeeee ® @ --@ - *--@------- *------ *-o-o
[ T T T T 1
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X
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Inference for latent GP models

Two distributions typically of interest
fly, X o< P(y|f, X)P(f|X) (posterior)

ly, X = / P(r*|f,X,x*)P(f|ly, X)df  (posterior predictive for latent variable)

When P(y|f) is not Gaussian, we lack closed-form expression for posterior.
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Inference for latent GP models

Two distributions typically of interest

fly, X o< P(y|f, X)P(f|X) (posterior)

ly, X = / P(r*|f,X,x*)P(f|ly, X)df  (posterior predictive for latent variable)

When P(y|f) is not Gaussian, we lack closed-form expression for posterior.
Approaches:

o MCMC (easily extends to parameter inference as well).

o Laplace approximation:

o Find posterior mode f (using any gradient-based optimizer).
o Use Normal approximation to posterior

P(fly, X) ~ N(f, H)

where H is the negative Hessian of the posterior evaluated at f.

@ Expectation Propagation, variational approximation.

Dan Cervone (NYU CDS) Gaussian Processes November 10, 2015

16 / 22



Applications: climate reconstruction

[M. Tingley and P. Huybers, “Recent temperature extremes at high northern latitudes unprecedented in the past 600 years.” Nature, 2013]

A MXD
» lce 5%
4 Varves
e CRU
e Target

100
® ® -
50 1003

1400 1500 1600 1700 1800 1900 20001850 1900 1950 2000
Year Year

Count

Figure S.1: Data availabilit;
legend, MXD refers to the tr
anomalies

in space and time. (a) Locations of the data time series. In the
ing density series, and Target refers to locations where temperature
re there are no observations. The two areas outlined in black are
used to assess anomalous warmth in 2010. (b) and (c) The number and type of proxy (b) and
instrumental observations (c) available at each year.

re inferred but wh

[Tingley & Huybers]
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Data

@ O;: temperature data for year
i from location set Xo.

@ R;: "proxy” data for year i
from location set Xg.

Model

4] T,-O: latent true temperature
for year i at locations Xo.

@ 0; =A,T?.

@ R; = AgTF.

@ TF: latent true temperature
for year i at locations Xg.

° T, =(T7 TF)

O T, =ITi—1+m;

@ n~GgPpP.
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Applications: climate reconstruction

[M. Tingley and P. Huybers, “Recent temperature extremes at high northern latitudes unprecedented in the past 600 years.” Nature, 2013]

Year = 1453 Year = 1601 Year = 1642 Year = 1695
c
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£
g
=
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i
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g
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g
2 =
A ° &
g :
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3 .
S5 (e}
g 1
8
Figure §.8: Temperature anomaly estimates and uncertaintics fo four years. The top xow plots the posterior median of the temperature
distsbution for cac ootion for 1153, 1601, 1612 nd 1695, rspectiels. while th botiom row plots the widihs of the Correaponding
dible intervals. In the bottom row, symbols denote that a proxy, and/or instrumental observation is available for that location

[Tingley & Huybers]
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Data

@ O;: temperature data for year
i from location set Xo.

@ R;: "proxy” data for year i
from location set Xg.

Model

o T,-o: latent true temperature
for year i at locations Xo.

@ 0, =AoT?.

@ R; = AgTF.

@ TF. latent true temperature
for year i at locations Xg.

° T~ (10 T

Q@ T, =ITi_1+mn;

@ n~GpP.
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Applications: species population mapping
[A. Chakraborty et al., “Modeling large scale species abundance with latent spatial processes.” Annals of Applied Statistics, 2010.]
Data and model:

@ Y(A): count of species in region A.

o Y(A) ~ Pois(u(A)).

o ((A) = [, A(s)ds.

o log(A(s)) = f(s) + Z(s)'B.

o f ~ GP, Z vector of covariates for location s (e.g. altitude, etc).

Fic. 6. Posterior mean spatial effects (0) for Protea punctata (PRPUNC) and Protea
repens (PRREPE). These effects offer local adjustment to potential abund; Cells with
values greater than zero represent regions with larger than expected populations, dit l
on. the other covariates.

[Chakraborty et al.]
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Applications: computer experiments

[B. Gramacy and H. Lee, “Bayesian treed Gaussian process models with an application to computer modeling.” Journal of the American Statistical

Association, 2008.]

NASA uses computer
experiments to simulate
the force applied to a
vehicle entering the
atmosphere: g(s, a, 3).

@ g computed by fluid
dynamics simulation;
each evaluation takes
~ 20 hours.

@ Build GP emulator
f =~ g given 3000
observations of g.

Dan Cervone (NYU CDS)

lift=(mach,alpha,beta=0,) lift={(mach.alpha beta=0.5) lift=f(mach alpha,beta=1)

lift=f(mach,alpha beta=2)

Figure 1: Interpolation of lift by speed and angle of attack for all sideslip levels. Note
that for levels 0.5 and 3 (center), Mach ranges only in (1,5) and (1.2,2.2).

[Gramacy and Lee]
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Applications: Bayesian optimization

[J. Snoek et al. “Practical Bayesian optimization of machine learning algorithms.” NIPS, 2012.]

Bayesian optimization helps tune hyperparameters for ML algorithms.

e f(x): performance metric (e.g. MSPE) for ML algorithm with tuning
parameters = X.

o f ~GP.
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Applications: Bayesian optimization

[J. Snoek et al. “Practical Bayesian optimization of machine learning algorithms.” NIPS, 2012.]

Bayesian optimization helps tune hyperparameters for ML algorithms.

e f(x): performance metric (e.g. MSPE) for ML algorithm with tuning
parameters = X.

e f~GPp.
Expected improvement in f at x*:
@ Denote f(x*)|f ~ N (u(x*; X,y), o(x*; X,y)).
0 Y(x*) = (f(Xbest) — u(x*; X, y))/o(x*; X,y), where Xpest = argmin, f(x;).
EI(x") = 7(x" )L + 0(x"s X, y)O((x")]
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Applications: Bayesian optimization

[J. Snoek et al. “Practical Bayesian optimization of machine learning algorithms.” NIPS, 2012.]

Bayesian optimization helps tune hyperparameters for ML algorithms.

e f(x): performance metric (e.g. MSPE) for ML algorithm with tuning
parameters = X.

e f~GPp.
Expected improvement in f at x*:
e Denote f(x*)|f ~ N (u(x*; X,y), o(x*; X, y)).
0 Y(x*) = (f(Xbest) — u(x*; X, y))/o(x*; X,y), where Xpest = argmin, f(x;).
EI(x") = 7(x)[L + o(x"; X, y)o((x")]
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Figure 4: Different strategies of optimization on the Online LDA problem compared in terms of function
evaluations (4a), walltime (4b) and constrained to a grid or not (4c).
[Snoek et al.]
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Further challenges: non-stationarity

How reasonable is stationarity in practice?
@ Boundary effects.

@ Mean processes and trends.
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Further challenges: non-stationarity

How reasonable is stationarity in practice?
@ Boundary effects.
@ Mean processes and trends.
Models for non-stationary GPs.
@ Basis functions: pu(x) = Zle w;mj(x).
@ Local approximations and GP trees.
@ Dimension expansion: assume in some additional dimensions z, there exists
stationary GP f(x, z).
e Warping: assume there exists g such that f(g(x)) is stationary.
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Further challenges: computation

Likelihood calculations and predictions require O(n®) time and O(n?) memory.
@ Simple GP implementations fail on small(ish) (n > 10000) data sets!
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Further challenges: computation

Likelihood calculations and predictions require O(n®) time and O(n?) memory.

@ Simple GP implementations fail on small(ish) (n > 10000) data sets!
Methods for reducing computational complexity:

@ Sparsity, including covariance tapering and GMRF approximations to f.

@ Structured covariance models (e.g. Kronecker, Toeplitz).

@ Low rank covariance models (e.g. inducing points, basis functions).

@ Likelihood approximations and approximate inference.
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