
UA.0480-002 Problem Set 1 1

Introduction to Machine Learning, Fall 2012

Problem Set 1: Perceptron algorithm & Support vector machines
Due: Tuesday, September 25, 2012 at 11am (before class begins)

Important: See problem set policy on the course web site.

1. (5 points) Consider a (hard margin) support vector machine and the following training
data from two classes:

+1 : (2, 2) (4, 4) (4, 0)

−1 : (0, 0) (2, 0) (0, 2)

(a) Plot these six training points, and construct by inspection the weight vector for the
optimal hyperplane. In your solution, specify the hyperplane in terms of ~w and b
such that w1x1 +w2x2 + b = 0. Calculate what the margin is (i.e., 2γ, where γ is the
distance from the hyperplane to its closest data point), showing all of your work.

(b) What are the support vectors? Explain why.

2. (5 points) Show that, irrespective of the dimensionality of the data space, a data set
consisting of just two data points (call them ~x1 and ~x2), one from each class, is sufficient
to determine the maximum-margin hyperplane. Fully explain your answer, including giving
an explicit formula for the maximum-margin hyperplane as a function of ~x1 and ~x2.

3. (5 points) In class we discussed a generalization of the SVM to multi-class classification,
where we introduced parameters ~w(k) and b(k) for each class k = 1, . . . ,K (where K is the
number of classes), and where prediction for a new data point ~x is done using

ŷ ← arg max
k

~w(k) · ~x+ b(k)

For this problem, prove that this is equivalent to the binary prediction rule sign(~w · ~x+ b)
in the case that K = 2. That is, given as input ~w(1), b(1), ~w(2) and b(2), demonstrate ~w
and b that gives an equivalent decision rule. As always, you must show all of your work to
obtain full credit.

4. (10 points) Kernels

(a) For any two documents x and z, define k(x, z) to equal the number of unique words
that occur in both x and z (i.e., the size of the intersection of the sets of words in the
two documents). Is this function a kernel? Justify your answer. (Hint: k(x, z) is a
kernel if there exists φ(x) such that k(x, z) = φ(x)Tφ(z)).

(b) Assuming that ~x = [x1, x2], ~z = [z1, z2] (i.e., both vectors are two-dimensional) and
β > 0, show that the following is a kernel:

kβ(x, z) = (1 + β~x · ~z)2 − 1

(c) One way to construct kernels is to build them from simpler ones. Assuming k1(x, z)
and k2(x, z) are kernels, then one can show that so are these:

UA.0480-002 Problem Set 1 2

i. (scaling) f(x)f(z)k1(x, z) for any function f(x) ∈ R,

ii. (sum) k(x, z) = k1(x, z) + k2(x, z),

iii. (product) k(x, z) = k1(x, z)k2(x, z).

Using the above rules and the fact that k(x, z) = xT z is a kernel, show that the
following is also a kernel: (

1 +

(
x

||x||2

)T (
z

||z||2

))3

.

5. (15 points) In this question you will implement the Perceptron algorithm and apply it to
the problem of e-mail spam classification.

Instructions. You may use the programming language of your choice. However, you are
not permitted to use or reference any machine learning code or packages not written by
yourself. In addition to your answers to the below questions, hand in a print out of all
code that you write for this assignment.

Data files. We have provided you with three files: spamTrain.dat, spamTest.dat, and
vocab.txt. The data is comma deliminited. Each row of the data files corresponds to
a single e-mail. The first column gives the label (1=spam, 0=not spam), whereas the
subsequent columns give the pre-computed feature vector for each e-mail (described below).

Pre-processing. The dataset included for this exercise is based on a subset of the Spa-
mAssassin Public Corpus1. Figure 1 shows a sample email that contains a URL, an email
address (at the end), numbers, and dollar amounts. While many emails would contain
similar types of entities (e.g., numbers, other URLs, or other email addresses), the specific
entities (e.g., the specific URL or specific dollar amount) will be different in almost every
email. Therefore, one method often employed in processing emails is to “normalize” these
values, so that all URLs are treated the same, all numbers are treated the same, etc. For
example, we could replace each URL in the email with the unique string “httpaddr” to
indicate that a URL was present. This has the effect of letting the spam classifier make
a classification decision based on whether any URL was present, rather than whether a
specific URL was present. This typically improves the performance of a spam classifier,
since spammers often randomize the URLs, and thus the odds of seeing any particular
URL again in a new piece of spam is very small.

1http://spamassassin.apache.org/publiccorpus/

> Anyone knows how much it costs to host a web portal ?
> Well, it depends on how many visitors youre expecting. This can be any-
where from less than 10 bucks a month to a couple of $100. You should checkout
http://www.rackspace.com/ or perhaps Amazon EC2 if youre running something big..

To unsubscribe yourself from this mailing list, send an email to: groupname-
unsubscribe@egroups.com

Figure 1: Sample e-mail in SpamAssassin corpus before pre-processing.

UA.0480-002 Problem Set 1 3

anyon know how much it cost to host a web portal well it depend on how mani visitor
your expect thi can be anywher from less than number buck a month to a coupl of
dollarnumb you should checkout httpaddr or perhap amazon ecnumb if your run someth
big to unsubscrib yourself from thi mail list send an email to emailaddr

Figure 2: Pre-processed version of the sample e-mail from Figure 1.

We have already implemented the following email preprocessing steps: lower-casing; re-
moval of HTML tags; normalization of URLs, e-mail addresses, and numbers. In addition,
words are reduced to their stemmed form. For example, “discount”, “discounts”, “dis-
counted” and “discounting” are all replaced with “discount”. Finally, we removed all
non-words and punctuation. The result of these preprocessing steps is shown in Figure 2.

We ignore any word that occurs fewer than 100 times in the spam corpus, resulting in a
vocabulary with 1899 words. Since words that occur rarely in the training set are only
in a few emails, they might cause the learning algorithm to overfit our training set. The
complete vocabulary list is in the file vocab.txt (the ith line corresponds to the ith
feature/column in the data file (not counting the first column). The feature vector for
an e-mail is given by the presence or absence of each of these 1899 words, and is thus of
dimension 1899. That is, the feature xi ∈ {0, 1} corresponds to whether the ith word in
the vocabulary occurs in the e-mail.

(a) Implement the functions perceptron train(data file) and perceptron test(w,

data file).

The function perceptron train(data file) trains a perceptron classifier using the
examples in the provided data file, and should return ~w and k, the final classifica-
tion vector and the number of updates (mistakes) performed, respectively. You may
assume that the input data provided to your function is linearly separable (so the
stopping criterion should be that all points are correctly classified).

For this exercise, you do not need to add a bias feature to the feature vector (it turns
out not to improve classification accuracy, possibly because a frequently occuring
word already serves this purpose). Your implementation should cycle through the
data points in the order as given in the data file (rather than randomizing), so that
results are consistent for grading purposes.

The function perceptron test(w, data file) should take as input the weight vec-
tor ~w (the classification vector to be used) and a data file containing the test examples
and their labels. The function should return the test error, i.e. the fraction of test
examples which were misclassified by ~w.

(b) Train the linear classifier using the provided training data (spamTrain.dat). How
many mistakes are made before the algorithm terminates? Test your implementa-
tion of perceptron test by running it with the learned parameters and the training
data, making sure that the training error is zero. Next, classify the test e-mails
(spamTest.dat). What is the test error?

(c) One should expect that the test error decreases as the amount of training data in-
creases. Using only the first N rows of spamTrain.dat as training data, run the
perceptron algorithm on this smaller training set and evaluate the corresponding test
error (using all of the test data). Do this for N = 100, 200, 400, 800, 1600, and 3200,
and create a plot of the corresponding test errors as a function of N.

UA.0480-002 Problem Set 1 4

(d) To better understand how the spam classifier works, we can inspect the parameters to
see which words the classifier thinks are the most predictive of spam. Using vocab.txt

together with the parameters learned using all of the training data, output the 10
words with the most positive weights. What are they? Which 10 words have the most
negative weights?

(e) Implement the averaged perceptron algorithm, which is the same as your current
implementation but which, rather than returning the final weight vector, returns the
average of all weight vectors considered during the algorithm (including examples
where no mistake was made). Averaging reduces the variance between the different
vectors, and helps prevent the learning algorithm from overfitting (serving as a type
of regularization). What is the test error of this approach when trained on all of
spamTrain.dat?

Acknowledgement: This question is adapted from an assignment developed by Andrew
Ng of Stanford University and Coursera.

