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Introduction to Machine Learning, Fall 2012

Problem Set 5: Bayesian methods
Due: Tuesday, November 27, 2012 by 11am (in class, before class begins)

Important: See problem set policy on the course web site. You must show all of your work
and be rigorous in your writeups to obtain full credit.

1. (10 points) Medical diagnosis

You go for your yearly checkup and have several lab tests performed. A week later your
doctor calls you and says she has good and bad news. The bad news is that you tested
positive for a marker of a serious disease, and that the test is 99% accurate (i.e. the
probability of testing positive given that you have the disease is 0.99, as is the probability
of testing negative given that you don’t have the disease). The good news is that this is
a rare disease, striking only 1 in 10,000 people. Why is it good news that the disease is
rare? What are the chances that you actually have the disease?

2. (10 points) Fitting a naive Bayes spam filter by hand

Consider a naive Bayes model (where the class takes two states) for spam classification
with the vocabulary V = “secret”, “offer”, “low”, “price”, “valued”, “customer”, “today”,
“dollar”, “million”, “sports”, “is”, “for”, “play”, “healthy”, and “pizza”. We have the
following example spam messages: (b1) “million dollar offer”, (b2) “secret offer today”,
(b3) “secret is secret”. We also have the following normal messages: (g1) “low price for
valued customer”, (g2) “play secret sports today”, (g3) “sports is healthy”, (g4) “low
price pizza”. Give the maximum likelihood estimates (MLE) for the following parameters:
θspam, θsecret|spam, θsecret|non-spam, θsports|non-spam, and θdollar|spam.

3. (10 points) Missing features in naive Bayes

Consider a naive Bayes model given by Pr(Y,X1, . . . , Xn) = Pr(Y )
∏N

i=1 Pr(Xi | Y ). Let
O ⊆ {1, . . . , N} denote the variables that are observed in a new instance. Derive a simple
formula for the posterior Pr(Y = y | XO = xO), where xO denotes the assignment to the
variables that were observed (all other variables’ values are unobserved).

4. (10 points) Logistic regression on linearly separable data

Show that for a linearly separable data set, the maximum likelihood solution for the logistic
regression model is obtained by finding a vector w whose decision boundary wTφ(x)+w0 =
0 separates the classes, and then taking the magnitude of w to infinity.

5. (20 points) LDA and naive Bayes are linear classifiers

(a) Suppose we have training data given by D = {(x1, y1), . . . , (xN , yN )}. Consider the
following learning algorithm for binary classification with features X ∈ Rk and labels
Y ∈ {0, 1}. First, let Pr(Y = 1) = 1

N

∑N
i=1 yi be the fraction of training examples

labeled 1. Then we find the maximum likelihood fit of two multi-variate Gaussian
distributions to the data in each class, where the Gaussian distribution is given by

Pr(x;µY ,ΣY ) =
1

(2π)k/2|ΣY |1/2
exp

(
−1

2
(x− µY)T Σ−1Y (x− µY)

)
.
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For example, the MLE estimates for the means are given by (for Y ∈ {0, 1}):

µ̂Y =
1

|{(xi, yi) ∈ D : yi = Y }|
∑

(xi,yi)∈D:yi=Y

xi.

This algorithm is known as linear discriminant analysis (LDA).1

In this problem, show that when the co-variance matrices are equal, i.e. Σ0 = Σ1,
then maximum a posteriori (MAP) classification using this model is given by a linear
discriminant function. Specifically, for any µ0, µ1 and Σ, demonstrate a weight vector
w and offset b such that for any new example x,

arg max
y

Pr(y | x ; µ0, µ1,Σ) = arg max
y

y (w · x + b) .

Hint: Use Bayes’ rule to obtain the posterior, and then take its logarithm (noticing
that this is a monotonic transformation which does not change the argmax).

(b) Show that the same holds for naive Bayes. In particular, consider using a naive Bayes
algorithm for binary prediction (two classes), where the features x1, . . . , xk are also
binary valued. Let θc = Pr(Y = c) and θci = Pr(Xi = 1 | Y = c) for c ∈ {0, 1}. It
will be helpful to use the following form for the joint distribution:

Pr(Y = 1, x1, . . . , xk ; θ) = θ1

k∏
i=1

θxi
1i (1− θ1i)1−xi (1)

Pr(Y = 0, x1, . . . , xk ; θ) = θ0

k∏
i=1

θxi
0i (1− θ0i)1−xi (2)

For a naive Bayes model given by parameters θ, demonstrate a weight vector w and
offset b such that for any new example x,

arg max
y

Pr(y | x ; θ) = arg max
y

y (w · x + b) .

Thus, if one had a sufficient amount of data, one would prefer to directly learn a linear
model using logistic regression or a SVM rather than using LDA or naive Bayes, since the
former consider a strictly larger hypothesis class than the latter. With limited numbers
of training points (or settings where some features may be missing) LDA and naive Bayes
may be preferable.

1Note, this acronym is also used for Latent Dirichlet Allocation, which is a type of “topic model” and has
nothing to do with linear discriminant analysis.


