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Ensemble methods

Machine learning competition with a $1 million prize

Leaderboard

Display top| 20 |+ |leaders.

Best Score
0.8553

o
Team Name
The Ensemble

Rank % Improvement Last Submit Time
10.10 2009-07-26 18:38:22

10.09 2009-07-26 18:18:28

Grand Prize - RMSE <= 0.8563

3 Grand Prize Team 0.8571 9.91 2009-07-24 13:07:49
4 and Vandelay United 0.8573 9.89 2009-07-25 20:05:52
5 0.8579 9.83 2009-07-26 02:49:53
] PragmaticThec 0.8582 9.80 2009-07-12 15:09:53
7 BellKor in BigChaos 0.8590 9.71 2009-07-26 12:57:25
8 0.8603 9.58 2009-07-24 17:18:43
9 0.8611 9.49 2009-07-26 18:02:08
10 0.8612 9.48 2009-07-26 17:19:11
1 0.8613 9.47 2009-08-23 23:06:52
12 0.8613 9.47 2009-07-24 20:06:46
13 xiangliang 0.8633 9.26 2009-07-21 02:04:40
14 Gravity 0.8634 9.25 2009-07-26 15:58:34
15 0.8642 917 2009-07-25 17:42:38
16 Invisible Ideas 0.8644 9.14 2009-07-20 03:26:12
17 Just a quyin a garage 0.8650 9.08 2009-07-22 14:10:42
18 Craig Carmichael 0.8656 9.02 2009-07-25 16:00:54
19 J Dennis Su 0.8658 9.00 2009-03-1109:41:54
20 cmehill 0.8659 8.99 2009-04-16 06:29:35
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Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001



Reduce Variance Without Increasing
Bias
* Averaging reduces variance:

— Var(x (when predictions
Var(X) (&) are independent)

N
Average models to reduce model variance

One problem:
only one training set
where do multiple models come from?




Bagging: Bootstrap Aggregation

Leo Breiman (1994)
Take repeated bootstrap samples from training set D.

Bootstrap sampling: Given set D containing N training
examples, create D’ by drawing N examples at random
with replacement from D.

Bagging:

— Create k bootstrap samples D, ... D,.

— Train distinct classifier on each D..

— Classify new instance by majority vote / average.



Bagging

* Best case: Variance(L(x, D
Var(Bagging (L(x, D))) ;(, 2

In practice:
models are correlated, so reduction is smaller than 1/N

variance of models trained on fewer training cases
usually somewhat larger



Bagging Example
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deC|S|on tree learning algorithm; very similar to ID3

CART decmon boundary
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Reduce Bias? and Decrease Variance?

* Bagging reduces variance by averaging
* Bagging has little effect on bias
 Can we average and reduce bias?

* Yes:

* Boosting



Theory and Applications of Boosting

Rob Schapire



Example: “How May | Help You?"

[Gorin et al ]

e goal: automatically categorize type of call requested by phone
customer (Collect, CallingCard, PersonToPerson, etc.)

e yes I’d like to place a collect call long distance
please (Collect)

e operator I need to make a call but I need to bill
it to my office (ThirdNumber)

e yes I’d like to place a call on my master card
please (CallingCard)

e I just called a number in sioux city and I musta
rang the wrong number because I got the wrong
party and I would like to have that taken off of
my bill (BillingCredit)

e observation:
o easy to find “rules of thumb” that are “often” correct

e.g.. “IF ‘card’ occurs in utterance
THEN predict ‘CallingCard’ "

» hard to find single highly accurate prediction rule



The Boosting Approach

e devise computer program for deriving rough rules of thumb
e apply procedure to subset of examples

e obtain rule of thumb

e apply to 2nd subset of examples

e obtain 2nd rule of thumb

e repeat T times



Key Details

e how to choose examples on each round?
o concentrate on “hardest” examples
(those most often misclassified by previous rules of
thumb)

e how to combine rules of thumb into single prediction rule?
o take (weighted) majority vote of rules of thumb



Boosting

e boosting = general method of converting rough rules of
thumb into highly accurate prediction rule

e technically:
assume given “weak” learning algorithm that can
consistently find classifiers (“rules of thumb™) at least
slightly better than random, say, accuracy > 55%
(in two-class setting) [ “weak learning assumption” |
given sufficient data, a boosting algorithm can provably
construct single classifier with very high accuracy, say,
99%



Preamble: Early History




Strong and Weak Learnability

boosting's roots are in “PAC” learning model [Valiant '84]

get random examples from unknown, arbitrary distribution

strong PAC learning algorithm:
for any distribution
with high probability
given polynomially many examples (and polynomial time)
can find classifier with arbitrarily small generalization
error

weak PAC learning algorithm

same, but generalization error only needs to be slightly
better than random guessing (1 — )

[Kearns & Valiant '88]:
does weak learnability imply strong learnability?



If Boosting Possible, Then...

can use (fairly) wild guesses to produce highly accurate
predictions

if can learn “part way” then can learn “all the way”

should be able to improve any learning algorithm

for any learning problem:
either can always learn with nearly perfect accuracy
or there exist cases where cannot learn even slightly
better than random guessing



First Boosting Algorithms

[Schapire '89]:
first provable boosting algorithm
[Freund "90]:
“optimal” algorithm that “boosts by majority”
[Drucker, Schapire & Simard '92]:
first experiments using boosting
limited by practical drawbacks
[Freund & Schapire '95]:
introduced “"AdaBoost” algorithm
strong practical advantages over previous boosting
algorithms



Application: Detecting Faces
[Viola & Jones]

e problem: find faces in photograph or movie

e weak classifiers: detect light/dark rectangles in image

e many clever tricks to make extremely fast and accurate



Basic Algorithm and Core Theory

e introduction to AdaBoost
e analysis of training error

e analysis of test error
and the margins theory

e experiments and applications



Basic Algorithm and Core Theory

e introduction to AdaBoost
[



A Formal Description of Boosting

e given training set  (x1,¥1), ..., (Xm, Ym)
e yi € {—1,+1} correct label of instance x; € X
e fort=1,...,T:

o construct distribution Dy on {1,..., m}

o find weak classifier (“rule of thumb™)
ht X = {*1,+1}
with error €; on Dy:

et = Priup [he(x;) # yi]
e output final/combined classifier Hapal



AdaBoost

[with Freund]

e constructing D;:
o Di(i)=1/m
o given D; and h;:

~ _ D:i(i) e” if yj = he(xi)
Deiali) = Z { e if yj # he(xi)
D:(i)

= Z: exp(—at Yi ht(Xi))

where Z; = normalization factor

atzlln(1_6t> >0
2 €t

e final classifier:

o Hpnal(x) = sign (Z atht(x)>




Toy Example

weak classifiers = vertical or horizontal half-planes



Round 1

hy

£1=0.30
=042




Round 2

£5=021
0y=0.65




Round 3




Final Classifier

H
final

=sign | 0.42

+0.65

+0.92




e

CsAlL Voted combination of classifiers

e [he general problem here is to try to combine many simple
“weak’ classifiers into a single “strong” classifier

e We consider voted combinations of simple binary =1
component classifiers

hin(X) = a1 h(x;01) + ... + am h(x;60,,)

where the (non-negative) votes «; can be used to emphasize
component classifiers that are more reliable than others

Tommi Jaakkola, MIT CSAIL 3



e

CSAIL Components: decision stumps

e Consider the following simple family of component classifiers
generating £1 labels:

h(x;0) = sign( w1z — wo )
where 0 = {k, w1, wq}. These are called decision stumps.

e Each decision stump pays attention to only a single
component of the input vector

Tommi Jaakkola, MIT CSAIL 4



e

ESAIL Voted combination cont’d

e We need to define a loss function for the combination so
we can determine which new component hA(x;6) to add and
how many votes it should receive

hin(X) = a1h(x;01) + ... + anh(x;0,,)

e While there are many options for the loss function we consider
here only a simple exponential loss

exp{ —y hm(x) }

Tommi Jaakkola, MIT CSAIL 5



e

CSAIL Modularity, errors, and loss

o Consider adding the m!"* component:

n

Z exp{ —¥ilhm—-1(x;) + amh(xi;0m)] }

1=1

— Z exp{ —yihm_1(Xz') - yz'Oémh(Xi5 em) }
1=1

Tommi Jaakkola, MIT CSAIL



e

CSAIL Modularity, errors, and loss

o Consider adding the m!"* component:

n

Z exp{ —¥ilhm-1(x;) + amh(xi;0m)] }

1=1

> exp{ —yilm—1(x:) — yiomh(xi; ) }
1=1

> exp{ —yihm1(x:)} exp{—yiamh(x;; 0m) }
=1 fixed at stage m

Tommi Jaakkola, MIT CSAIL



e

CsAIL Modularity, errors, and loss
o Consider adding the m!” component:

n

Z exp{ —¥ilhm—1(Xi) + Qmh(Xi; 0m)] }

1=1

— Z exp{ —yihm_1(X7;) — yz-ozmh(Xz'; Hm) }
1=1

— S: gXp{ _yihm—l(xi)k eXp{_yiamh(Xi; Qm) }
=1 fixed at stage m

— Z Wi(m_l) eXp{—yiOémh(Xz’; Hm)}

1=1

So at the m!" iteration the new component (and the votes)
should optimize a weighted loss (weighted towards mistakes).

Tommi Jaakkola, MIT CSAIL 8



e

CSAIL Empirical exponential loss cont’d

e To increase modularity we'd like to further decouple the
optimization of h(x;#,,) from the associated votes .,

e To this end we select h(x;#,,) that optimizes the rate at
which the loss would decrease as a function of «,,

0 ~ m=1)
— W. expd —v;amh(X;; 0) } =
0 2 (pnh(xis0) )

N WY exp{—yiamh(xs; 0m) } - (— yih(xs; 0m))
L 1=1

n

= D WY (= yih(xi; Om))

L 1=1

4 oy, =0

Tommi Jaakkola, MIT CSAIL 11



e

CsAIL Empirical exponential loss cont’d
o We find h(x;0,,) that minimizes

- WY yih(xi; 0m)

1=1

We can also normalize the weights:

so that 0, W™V =1,

Tommi Jaakkola, MIT CSAIL

13



e

san Selecting a new component: summary
o We find h(x;0,,) that minimizes

- Z W yih(xi; 0m)

i=1
where S W™ =1,

® «,, is subsequently chosen to minimize

Z Wi(m—l) eXp{_yiamh(Xi; ém) }
1=1

Tommi Jaakkola, MIT CSAIL

14



ﬁcguﬁu The AdaBoost algorithm
0) Set W\ =1/nfori=1,...,n

1) At the m'" iteration we find (any) classifier h(x;60,,) for
which the weighted classification error €,,

L (= 5 (m1) Y

i=1
Is better than chance.

2) The new component is assigned votes based on its error:
G = 0.5 log( (1 —€m)/€m )

3) The weights are updated according to (Z,, is chosen so that
the new weights W™ sum to one):

- 1 e ) .
Wz( ) — Z_ . Wz( 1) . exp{ _yiamh(xi; Hm) }

Tommi Jaakkola, MIT CSAIL 18





