
Ensemble	
 learning	

Lecture	
 12	

David	
 Sontag	

New	
 York	
 University	

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
Rob Schapire, and Tommi Jaakkola

Ensemble	
 methods	

Machine learning competition with a $1 million prize

3

Bias/Variance	
 Tradeoff	

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001	

4

Reduce	
 Variance	
 Without	
 Increasing	

Bias	

•  Averaging	
 reduces	
 variance:	

Average models to reduce model variance

One problem:
only one training set

where do multiple models come from?

(when predictions
 are independent)

5

Bagging:	
 Bootstrap	
 AggregaGon	

•  Leo	
 Breiman	
 (1994)	

•  Take	
 repeated	
 bootstrap	
 samples	
 from	
 training	
 set	
 D.	

•  Bootstrap	
 sampling:	
 Given	
 set	
 D	
 containing	
 N	
 training	

examples,	
 create	
 D’	
 by	
 drawing	
 N	
 examples	
 at	
 random	

with	
 replacement	
 from	
 D.	

•  Bagging:	

–  Create	
 k	
 bootstrap	
 samples	
 D1	
 …	
 Dk.	

–  Train	
 disGnct	
 classifier	
 on	
 each	
 Di.	

–  Classify	
 new	
 instance	
 by	
 majority	
 vote	
 /	
 average.	

6

Bagging	

•  Best	
 case:	

In practice:
models are correlated, so reduction is smaller than 1/N

variance of models trained on fewer training cases
usually somewhat larger

7

8

decision tree learning algorithm; very similar to ID3

shades of blue/red indicate strength of vote for particular classification

10

Reduce	
 Bias2	
 and	
 Decrease	
 Variance?	

•  Bagging	
 reduces	
 variance	
 by	
 averaging	

•  Bagging	
 has	
 liZle	
 effect	
 on	
 bias	

•  Can	
 we	
 average	
 and	
 reduce	
 bias?	

•  Yes:	
 	

•  BoosGng	

Theory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of Boosting

Rob Schapire

Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”
[Gorin et al.]

• goal: automatically categorize type of call requested by phone
customer (Collect, CallingCard, PersonToPerson, etc.)

• yes I’d like to place a collect call long distance

please (Collect)
• operator I need to make a call but I need to bill

it to my office (ThirdNumber)
• yes I’d like to place a call on my master card

please (CallingCard)
• I just called a number in sioux city and I musta

rang the wrong number because I got the wrong

party and I would like to have that taken off of

my bill (BillingCredit)

• observation:
• easy to find “rules of thumb” that are “often” correct

• e.g.: “IF ‘card’ occurs in utterance
THEN predict ‘CallingCard’ ”

• hard to find single highly accurate prediction rule

The Boosting ApproachThe Boosting ApproachThe Boosting ApproachThe Boosting ApproachThe Boosting Approach

• devise computer program for deriving rough rules of thumb

• apply procedure to subset of examples

• obtain rule of thumb

• apply to 2nd subset of examples

• obtain 2nd rule of thumb

• repeat T times

Key DetailsKey DetailsKey DetailsKey DetailsKey Details

• how to choose examples on each round?
• concentrate on “hardest” examples
(those most often misclassified by previous rules of
thumb)

• how to combine rules of thumb into single prediction rule?
• take (weighted) majority vote of rules of thumb

BoostingBoostingBoostingBoostingBoosting

• boosting = general method of converting rough rules of
thumb into highly accurate prediction rule

• technically:
• assume given “weak” learning algorithm that can
consistently find classifiers (“rules of thumb”) at least
slightly better than random, say, accuracy ≥ 55%
(in two-class setting) [“weak learning assumption”]

• given sufficient data, a boosting algorithm can provably
construct single classifier with very high accuracy, say,
99%

Preamble: Early HistoryPreamble: Early HistoryPreamble: Early HistoryPreamble: Early HistoryPreamble: Early History

Strong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak Learnability

• boosting’s roots are in “PAC” learning model [Valiant ’84]

• get random examples from unknown, arbitrary distribution

• strong PAC learning algorithm:

• for any distribution
with high probability
given polynomially many examples (and polynomial time)
can find classifier with arbitrarily small generalization
error

• weak PAC learning algorithm

• same, but generalization error only needs to be slightly
better than random guessing (12 − γ)

• [Kearns & Valiant ’88]:
• does weak learnability imply strong learnability?

If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...

• can use (fairly) wild guesses to produce highly accurate
predictions

• if can learn “part way” then can learn “all the way”

• should be able to improve any learning algorithm

• for any learning problem:
• either can always learn with nearly perfect accuracy
• or there exist cases where cannot learn even slightly
better than random guessing

First Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting Algorithms

• [Schapire ’89]:
• first provable boosting algorithm

• [Freund ’90]:
• “optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]:
• first experiments using boosting
• limited by practical drawbacks

• [Freund & Schapire ’95]:
• introduced “AdaBoost” algorithm
• strong practical advantages over previous boosting
algorithms

Application: Detecting FacesApplication: Detecting FacesApplication: Detecting FacesApplication: Detecting FacesApplication: Detecting Faces
[Viola & Jones]

• problem: find faces in photograph or movie

• weak classifiers: detect light/dark rectangles in image

• many clever tricks to make extremely fast and accurate

Basic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core Theory

• introduction to AdaBoost

• analysis of training error

• analysis of test error
and the margins theory

• experiments and applications

Basic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core Theory

• introduction to AdaBoost

• analysis of training error

• analysis of test error
and the margins theory

• experiments and applications

A Formal Description of BoostingA Formal Description of BoostingA Formal Description of BoostingA Formal Description of BoostingA Formal Description of Boosting

• given training set (x1, y1), . . . , (xm, ym)

• yi ∈ {−1,+1} correct label of instance xi ∈ X

• for t = 1, . . . ,T :
• construct distribution Dt on {1, . . . ,m}

• find weak classifier (“rule of thumb”)

ht : X → {−1,+1}

with error εt on Dt :

εt = Pri∼Dt [ht(xi) %= yi]

• output final/combined classifier Hfinal

AdaBoostAdaBoostAdaBoostAdaBoostAdaBoost
[with Freund]

• constructing Dt :

• D1(i) = 1/m
• given Dt and ht :

Dt+1(i) =
Dt(i)

Zt
×

{

e−αt if yi = ht(xi)
eαt if yi %= ht(xi)

=
Dt(i)

Zt
exp(−αt yi ht(xi))

where Zt = normalization factor

αt =
1

2
ln

(
1− εt
εt

)

> 0

• final classifier:

• Hfinal(x) = sign

(

∑

t

αtht(x)

)

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

Voted combination of classifiers
• The general problem here is to try to combine many simple

“weak” classifiers into a single “strong” classifier

• We consider voted combinations of simple binary ±1
component classifiers

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

where the (non-negative) votes αi can be used to emphasize
component classifiers that are more reliable than others

Tommi Jaakkola, MIT CSAIL 3

Components: decision stumps
• Consider the following simple family of component classifiers

generating ±1 labels:

h(x; θ) = sign(w1 xk − w0)

where θ = {k, w1, w0}. These are called decision stumps.

• Each decision stump pays attention to only a single
component of the input vector

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT CSAIL 4

Voted combination cont’d
• We need to define a loss function for the combination so

we can determine which new component h(x; θ) to add and
how many votes it should receive

hm(x) = α1h(x; θ1) + . . . + αmh(x; θm)

• While there are many options for the loss function we consider
here only a simple exponential loss

exp{−y hm(x) }

Tommi Jaakkola, MIT CSAIL 5

Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 6

Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n�

i=1

exp{−yihm−1(xi)}� �� �
fixed at stage m

exp{−yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 7

Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n�

i=1

exp{−yihm−1(xi)}� �� �
fixed at stage m

exp{−yiαmh(xi; θm) }

=
n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) }

So at the mth iteration the new component (and the votes)
should optimize a weighted loss (weighted towards mistakes).

Tommi Jaakkola, MIT CSAIL 8

Empirical exponential loss cont’d
• To increase modularity we’d like to further decouple the

optimization of h(x; θm) from the associated votes αm

• To this end we select h(x; θm) that optimizes the rate at
which the loss would decrease as a function of αm

∂

∂αm
��αm=0

n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) } =

�
n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) } ·

�
− yih(xi; θm)

�
�

αm=0

=

�
n�

i=1

W (m−1)
i

�
− yih(xi; θm)

�
�

Tommi Jaakkola, MIT CSAIL 11

Empirical exponential loss cont’d
• We find h(x; θ̂m) that minimizes

−
n�

i=1

W (m−1)
i yih(xi; θm)

We can also normalize the weights:

−
n�

i=1

W (m−1)
i�n

j=1 W (m−1)
j

yih(xi; θm)

= −
n�

i=1

W̃ (m−1)
i yih(xi; θm)

so that
�n

i=1 W̃ (m−1)
i = 1.

Tommi Jaakkola, MIT CSAIL 13

Selecting a new component: summary
• We find h(x; θ̂m) that minimizes

−
n�

i=1

W̃ (m−1)
i yih(xi; θm)

where
�n

i=1 W̃ (m−1)
i = 1.

• αm is subsequently chosen to minimize

n�

i=1

W̃ (m−1)
i exp{−yiαmh(xi; θ̂m) }

Tommi Jaakkola, MIT CSAIL 14

The AdaBoost algorithm
0) Set W̃ (0)

i = 1/n for i = 1, . . . , n

1) At the mth iteration we find (any) classifier h(x; θ̂m) for
which the weighted classification error �m

�m = 0.5− 1
2

�
n�

i=1

W̃ (m−1)
i yih(xi; θ̂m)

�

is better than chance.

2) The new component is assigned votes based on its error:

α̂m = 0.5 log((1− �m)/�m)

3) The weights are updated according to (Zm is chosen so that
the new weights W̃ (m)

i sum to one):

W̃ (m)
i =

1
Zm

· W̃ (m−1)
i · exp{−yiα̂mh(xi; θ̂m) }

Tommi Jaakkola, MIT CSAIL 18

