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Ensemble	
  methods	
  
Machine learning competition with a $1 million prize 
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Bias/Variance	
  Tradeoff	
  

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001	
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Reduce	
  Variance	
  Without	
  Increasing	
  
Bias	
  

•  Averaging	
  reduces	
  variance:	
  

Average models to reduce model variance 

One problem:  
only one training set 

where do multiple models come from? 

(when predictions 
 are independent) 
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Bagging:	
  Bootstrap	
  AggregaGon	
  

•  Leo	
  Breiman	
  (1994)	
  
•  Take	
  repeated	
  bootstrap	
  samples	
  from	
  training	
  set	
  D.	
  
•  Bootstrap	
  sampling:	
  Given	
  set	
  D	
  containing	
  N	
  training	
  
examples,	
  create	
  D’	
  by	
  drawing	
  N	
  examples	
  at	
  random	
  
with	
  replacement	
  from	
  D.	
  

•  Bagging:	
  
–  Create	
  k	
  bootstrap	
  samples	
  D1	
  …	
  Dk.	
  
–  Train	
  disGnct	
  classifier	
  on	
  each	
  Di.	
  
–  Classify	
  new	
  instance	
  by	
  majority	
  vote	
  /	
  average.	
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Bagging	
  

•  Best	
  case:	
  

In practice: 
models are correlated, so reduction is smaller than 1/N 

variance of models trained on fewer training cases 
usually somewhat larger 
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decision tree learning algorithm; very similar to ID3 



shades of blue/red indicate strength of vote for particular classification 
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Reduce	
  Bias2	
  and	
  Decrease	
  Variance?	
  

•  Bagging	
  reduces	
  variance	
  by	
  averaging	
  
•  Bagging	
  has	
  liZle	
  effect	
  on	
  bias	
  
•  Can	
  we	
  average	
  and	
  reduce	
  bias?	
  
•  Yes:	
  	
  

•  BoosGng	
  



Theory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of BoostingTheory and Applications of Boosting

Rob Schapire



Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”Example: “How May I Help You?”
[Gorin et al.]

• goal: automatically categorize type of call requested by phone
customer (Collect, CallingCard, PersonToPerson, etc.)

• yes I’d like to place a collect call long distance

please (Collect)
• operator I need to make a call but I need to bill

it to my office (ThirdNumber)
• yes I’d like to place a call on my master card

please (CallingCard)
• I just called a number in sioux city and I musta

rang the wrong number because I got the wrong

party and I would like to have that taken off of

my bill (BillingCredit)

• observation:
• easy to find “rules of thumb” that are “often” correct

• e.g.: “IF ‘card’ occurs in utterance
THEN predict ‘CallingCard’ ”

• hard to find single highly accurate prediction rule



The Boosting ApproachThe Boosting ApproachThe Boosting ApproachThe Boosting ApproachThe Boosting Approach

• devise computer program for deriving rough rules of thumb

• apply procedure to subset of examples

• obtain rule of thumb

• apply to 2nd subset of examples

• obtain 2nd rule of thumb

• repeat T times



Key DetailsKey DetailsKey DetailsKey DetailsKey Details

• how to choose examples on each round?
• concentrate on “hardest” examples
(those most often misclassified by previous rules of
thumb)

• how to combine rules of thumb into single prediction rule?
• take (weighted) majority vote of rules of thumb



BoostingBoostingBoostingBoostingBoosting

• boosting = general method of converting rough rules of
thumb into highly accurate prediction rule

• technically:
• assume given “weak” learning algorithm that can
consistently find classifiers (“rules of thumb”) at least
slightly better than random, say, accuracy ≥ 55%
(in two-class setting) [ “weak learning assumption” ]

• given sufficient data, a boosting algorithm can provably
construct single classifier with very high accuracy, say,
99%



Preamble: Early HistoryPreamble: Early HistoryPreamble: Early HistoryPreamble: Early HistoryPreamble: Early History



Strong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak LearnabilityStrong and Weak Learnability

• boosting’s roots are in “PAC” learning model [Valiant ’84]

• get random examples from unknown, arbitrary distribution

• strong PAC learning algorithm:

• for any distribution
with high probability
given polynomially many examples (and polynomial time)
can find classifier with arbitrarily small generalization
error

• weak PAC learning algorithm

• same, but generalization error only needs to be slightly
better than random guessing (12 − γ)

• [Kearns & Valiant ’88]:
• does weak learnability imply strong learnability?



If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...If Boosting Possible, Then...

• can use (fairly) wild guesses to produce highly accurate
predictions

• if can learn “part way” then can learn “all the way”

• should be able to improve any learning algorithm

• for any learning problem:
• either can always learn with nearly perfect accuracy
• or there exist cases where cannot learn even slightly
better than random guessing



First Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting AlgorithmsFirst Boosting Algorithms

• [Schapire ’89]:
• first provable boosting algorithm

• [Freund ’90]:
• “optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]:
• first experiments using boosting
• limited by practical drawbacks

• [Freund & Schapire ’95]:
• introduced “AdaBoost” algorithm
• strong practical advantages over previous boosting
algorithms



Application: Detecting FacesApplication: Detecting FacesApplication: Detecting FacesApplication: Detecting FacesApplication: Detecting Faces
[Viola & Jones]

• problem: find faces in photograph or movie

• weak classifiers: detect light/dark rectangles in image

• many clever tricks to make extremely fast and accurate



Basic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core Theory

• introduction to AdaBoost

• analysis of training error

• analysis of test error
and the margins theory

• experiments and applications



Basic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core TheoryBasic Algorithm and Core Theory

• introduction to AdaBoost

• analysis of training error

• analysis of test error
and the margins theory

• experiments and applications



A Formal Description of BoostingA Formal Description of BoostingA Formal Description of BoostingA Formal Description of BoostingA Formal Description of Boosting

• given training set (x1, y1), . . . , (xm, ym)

• yi ∈ {−1,+1} correct label of instance xi ∈ X

• for t = 1, . . . ,T :
• construct distribution Dt on {1, . . . ,m}

• find weak classifier (“rule of thumb”)

ht : X → {−1,+1}

with error εt on Dt :

εt = Pri∼Dt [ht(xi ) %= yi ]

• output final/combined classifier Hfinal



AdaBoostAdaBoostAdaBoostAdaBoostAdaBoost
[with Freund]

• constructing Dt :

• D1(i) = 1/m
• given Dt and ht :

Dt+1(i) =
Dt(i)

Zt
×

{

e−αt if yi = ht(xi )
eαt if yi %= ht(xi )

=
Dt(i)

Zt
exp(−αt yi ht(xi ))

where Zt = normalization factor

αt =
1

2
ln

(
1− εt
εt

)

> 0

• final classifier:

• Hfinal(x) = sign

(

∑

t

αtht(x)

)



Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes



Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D



Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D



Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14



Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=



Voted combination of classifiers
• The general problem here is to try to combine many simple

“weak” classifiers into a single “strong” classifier

• We consider voted combinations of simple binary ±1
component classifiers

hm(x) = α1 h(x; θ1) + . . . + αm h(x; θm)

where the (non-negative) votes αi can be used to emphasize
component classifiers that are more reliable than others

Tommi Jaakkola, MIT CSAIL 3



Components: decision stumps
• Consider the following simple family of component classifiers

generating ±1 labels:

h(x; θ) = sign( w1 xk − w0 )

where θ = {k, w1, w0}. These are called decision stumps.

• Each decision stump pays attention to only a single
component of the input vector
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Tommi Jaakkola, MIT CSAIL 4



Voted combination cont’d
• We need to define a loss function for the combination so

we can determine which new component h(x; θ) to add and
how many votes it should receive

hm(x) = α1h(x; θ1) + . . . + αmh(x; θm)

• While there are many options for the loss function we consider
here only a simple exponential loss

exp{−y hm(x) }

Tommi Jaakkola, MIT CSAIL 5



Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 6



Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n�

i=1

exp{−yihm−1(xi)}� �� �
fixed at stage m

exp{−yiαmh(xi; θm) }

Tommi Jaakkola, MIT CSAIL 7



Modularity, errors, and loss
• Consider adding the mth component:

n�

i=1

exp{−yi[hm−1(xi) + αmh(xi; θm)] }

=
n�

i=1

exp{−yihm−1(xi)− yiαmh(xi; θm) }

=
n�

i=1

exp{−yihm−1(xi)}� �� �
fixed at stage m

exp{−yiαmh(xi; θm) }

=
n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) }

So at the mth iteration the new component (and the votes)
should optimize a weighted loss (weighted towards mistakes).

Tommi Jaakkola, MIT CSAIL 8



Empirical exponential loss cont’d
• To increase modularity we’d like to further decouple the

optimization of h(x; θm) from the associated votes αm

• To this end we select h(x; θm) that optimizes the rate at
which the loss would decrease as a function of αm

∂

∂αm
��αm=0

n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) } =

�
n�

i=1

W (m−1)
i exp{−yiαmh(xi; θm) } ·

�
− yih(xi; θm)

�
�

αm=0

=

�
n�

i=1

W (m−1)
i

�
− yih(xi; θm)

�
�

Tommi Jaakkola, MIT CSAIL 11



Empirical exponential loss cont’d
• We find h(x; θ̂m) that minimizes

−
n�

i=1

W (m−1)
i yih(xi; θm)

We can also normalize the weights:

−
n�

i=1

W (m−1)
i�n

j=1 W (m−1)
j

yih(xi; θm)

= −
n�

i=1

W̃ (m−1)
i yih(xi; θm)

so that
�n

i=1 W̃ (m−1)
i = 1.

Tommi Jaakkola, MIT CSAIL 13



Selecting a new component: summary
• We find h(x; θ̂m) that minimizes

−
n�

i=1

W̃ (m−1)
i yih(xi; θm)

where
�n

i=1 W̃ (m−1)
i = 1.

• αm is subsequently chosen to minimize

n�

i=1

W̃ (m−1)
i exp{−yiαmh(xi; θ̂m) }

Tommi Jaakkola, MIT CSAIL 14



The AdaBoost algorithm
0) Set W̃ (0)

i = 1/n for i = 1, . . . , n

1) At the mth iteration we find (any) classifier h(x; θ̂m) for
which the weighted classification error �m

�m = 0.5− 1
2

�
n�

i=1

W̃ (m−1)
i yih(xi; θ̂m)

�

is better than chance.

2) The new component is assigned votes based on its error:

α̂m = 0.5 log( (1− �m)/�m )

3) The weights are updated according to (Zm is chosen so that
the new weights W̃ (m)

i sum to one):

W̃ (m)
i =

1
Zm

· W̃ (m−1)
i · exp{−yiα̂mh(xi; θ̂m) }

Tommi Jaakkola, MIT CSAIL 18




