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Dimensionality reduction

* |[nput data may have thousands or millions of
dimensions!
— e.g., text data has ???, images have ???
* Dimensionality reduction: represent data with
fewer dimensions
— easier learning — fewer parameters
— visualization — show high dimensional data in 2D

— discover “intrinsic dimensionality” of data
* high dimensional data that is truly lower dimensional
* noise reduction



Feature selection

e Want to learn f:X—Y
— X=<X,,..., X >

— but some features are more important than others

e Approach: select subset of features to be used
by learning algorithm
— Score each feature (or sets of features)
— Select set of features with best score



Greedy forward feature selection algorithm

* Pick a dictionary of features
— e.g., polynomials for linear regression

e Greedy: Start from empty (or simple) set of
features F,= J
— Run learning algorithm for current set of features F,
* Obtain h,

— Select next best feature X

* e.g., X; that results in lowest held out error when learning
with F, U{Xj}

— Ft+1 eFt U{Xi}
— Repeat



Greedy backward feature selection algorithm

* Pick a dictionary of features
— e.g., polynomials for linear regression

* Greedy: Start with all features F,=F

— Run learning algorithm for current set of features F,
* Obtain h,

— Select next worst feature X,

* e.g., X; that results in lowest held out error learner when
learning with F, - {X}

_Ft+1 eFt-{Xi}
— Repeat



Feature selection through regularization

Previously, we discussed regularization with a

squared norm: [/

) = arg mln Loss(6;D) + \ Z 02
We motivated the L2 norm usmg the idea of margin
What if we have reason to believe that there are only
a few relevant features?

In this case, we should regularize using the L1 norm!
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Big area of machine learning called “sparse recovery”



Feature selection through regularization
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Slide from Aarti Singh



Dimension reduction

* Assumption: data (approximately) lies on
a lower dimensional space

* Examples:

D=2
1d=1

Slide from Yi Zhang




Lower dimensional projections

Rather than picking a subset of the features, we can
obtain new ones by combining existing features x; ... x

n

2 = wok) + Zw(k) T

New features are linear comblnatlons of old ones
Reduces dimension when k<n

Let’s consider how to do this in the unsupervised
setting
— just X, butnoY



Which projection is better?

From notes by Andrew Ng



Reminder: Vector Projections

e Basic definitions:
—A.B=|A||B|cos B
—cos 8 = |adj|/|hyp|

A cos6

 Assume |B|=1 (unit vector)
—A.B=|A|cos 6

— So, dot product is length of
projection!!!



Maximize variance of projection

Let x( be the ith data point minus the mean.

Choose unit-length u to maximize:
Ly gty - L Z ear
m -
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Let |Ju||=1 and maximize. Using the method of Lagrange
multipliers, can show that the solution is given by the principal
eigenvector of the covariance matrix! (shown on board)



Basic PCA algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

— X, < X=X

Compute covariance matrix:

— X<—=1/mX_X_

Find eigen vectors and values of

Principal components: k eigen vectors with
highest eigen values



