Dimensionality Reduction Lecture 24

David Sontag
New York University

Slides adapted from Carlos Guestrin and Luke Zettlemoyer

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data has ???, images have ???
- Dimensionality reduction: represent data with fewer dimensions
 - easier learning fewer parameters
 - visualization show high dimensional data in 2D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional
 - noise reduction

Feature selection

- Want to learn f:X→Y
 - $X = <X_1,...,X_n>$
 - but some features are more important than others
- Approach: select subset of features to be used by learning algorithm
 - Score each feature (or sets of features)
 - Select set of features with best score

Greedy forward feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy: Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_{+}
 - Select next best feature X_i
 - e.g., X_j that results in lowest held out error when learning with $F_t \cup \{X_i\}$
 - $-F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Repeat

Greedy backward feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy: Start with all features $F_0 = F$
 - Run learning algorithm for current set of features F_t
 - Obtain h_{t}
 - Select next worst feature X_i
 - e.g., X_j that results in lowest held out error learner when learning with F_t $\{X_i\}$
 - $-F_{t+1} \leftarrow F_t \{X_i\}$
 - Repeat

Feature selection through regularization

Previously, we discussed regularization with a squared norm:

$$\hat{\theta} = \arg\min_{\theta} Loss(\theta; \mathcal{D}) + \lambda \sum_{i} \theta_{i}^{2}$$

- We motivated the L2 norm using the idea of margin
- What if we have reason to believe that there are only a few relevant features?
- In this case, we should regularize using the L1 norm!

$$\hat{\theta} = \arg\min_{\theta} Loss(\theta; \mathcal{D}) + \lambda \sum |\theta_i|$$

Big area of machine learning called "sparse recovery"

Feature selection through regularization

$$||W||_0 = \#\{W_i > 0\}$$

Minimizes # features chosen

$$||W||_1 = \sum |W_j|$$

Convex compromise

$$||W||_0 = \#\{W_j > 0\}$$
 $||W||_1 = \sum_j |W_j|$ $||W||_2 = \sum_j W_j^2$

Small weights of features chosen

Dimension reduction

- Assumption: data (approximately) lies on a lower dimensional space
- Examples:

Slide from Yi Zhang

Lower dimensional projections

• Rather than picking a subset of the features, we can obtain new ones by combining existing features $x_1 \dots x_n$

$$z_1 = w_0^{(1)} + \sum_i w_i^{(1)} x_i$$

• • •

$$z_k = w_0^{(k)} + \sum_i w_i^{(k)} x_i$$

- New features are linear combinations of old ones
- Reduces dimension when k<n
- Let's consider how to do this in the unsupervised setting
 - just X, but no Y

Which projection is better?

Reminder: Vector Projections

Basic definitions:

- $-A.B = |A||B|\cos\theta$
- $-\cos\theta = |adj|/|hyp|$

- Assume |B|=1 (unit vector)
 - $-A.B = |A| \cos \theta$
 - So, dot product is length of projection!!!

Maximize variance of projection

Let $x^{(i)}$ be the ith data point minus the mean.

Choose unit-length u to maximize:

$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)^T} u)^2 = \frac{1}{m} \sum_{i=1}^{m} u^T x^{(i)} x^{(i)^T} u$$

$$= u^T \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^T} \right) u.$$

Let ||u||=1 and maximize. Using the method of Lagrange multipliers, can show that the solution is given by the principal eigenvector of the covariance matrix! (shown on board)

Basic PCA algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$-X_{c} \leftarrow X - \overline{X}$$

Compute covariance matrix:

$$-\Sigma \leftarrow 1/m X_c^T X_c$$

- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values