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Introduction to Machine Learning, Fall 2013

Problem Set 3: Support Vector Machines
Tuesday, October 8, 2013 at 11am (before class begins)

Important: See problem set policy on the course web site.

Instructions. You may use the programming language of your choice. However, you are not
permitted to use or reference any machine learning code or packages not written by yourself,
except for question 2(d)-(g). In addition to your answers to the below questions, e-mail a PDF
of your solutions and all code that you write for this assignment to Chen-Chien.

1. In this question, you will implement the Pegasos algorithm [5] to optimize the SVM ob-
jective using stochastic sub-gradient descent and revisit the spam data.

Initialize: Choose w1 = 0, t = 0.
1. For iter = 1, 2, · · · , 20
2. For j = 1, 2, · · · , |data|
3. t = t+ 1; ηt = 1

tλ
5. If yj(wt · xj) < 1
6. u = (1− ηtλ)wt + ηtyjxj
7. Else
8. u = (1− ηtλ)wt

9. wt+1 = min
{

1, 1/
√
λ

‖u‖

}
u

8. Output: wt+1

We use the identical setting as in the problem set 1. Split the data in spam train.txt into
a training and validate set, putting the last 1000 emails into the validation set. Transform
all of the data into feature vectors. Build a vocabulary list using only the 4000 e-mail
training set by finding all words that occur across the training set. Ignore all words that
appear in fewer than X = 30 e-mails of the 4000 e-mail training set. For each email,
transform it into a feature vector ~x where the ith entry, xi, is 1 if the ith word in the
vocabulary occurs in the email, and 0 otherwise.

Note: To keep your algorithm simple, we will not use an offset term b when optimizing the
SVM primal objective using Pegasos.

(a) Implement the function pegasos svm train(data, lambda). The function should
return w, the final classification vector. For simplicity, the stopping criterion is set so
that the total number of passes over the training data is 20. After each pass through
the data, evaluate the SVM objective f(wt) = λ

2 ‖wt‖2+ 1
m

∑m
i=1 max{0, 1−yi(wt·xi)}

and store its value (m = |data|). Plot f(wt) as a function of iteration (i.e. for
t = |data|, . . . , 20|data|), and submit the plot for λ = 2−5.

(b) Implement the function pegasos svm test(data, w).

(c) Run your learning algorithm for various values of the regularization constant, λ =
2−9, 2−8, · · · , 21. Plot the average training error, average hinge loss of the training
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samples (i.e. 1
m

∑m
i=1 max{0, 1−yi(w·xi)}), and average validation error as a function

of log2 λ. You should expect that the hinge loss upper-bounds the training error.
What is the minimum of your validation error? For the classifier that has the smallest
validate error: What is the test error? How many training samples are support
vectors? How did you find them? Compare your test error with your result from
problem set 1.

Note: Using a smaller value of X such as 0 (i.e., not filtering the vocabulary) would give
even better results (the SVM’s regularization prevents overfitting).

2. The MNIST dataset is a database of handwritten digits. This problem will apply SVMs
to automatically classify digits; the US postal service uses a similar optical character
recognition (OCR) of zip codes to automatically route letters to their destination. The
original dataset can be downloaded at http://yann.lecun.com/exdb/mnist/. For this
problem, we randomly chose a subset of the original dataset. We have provided you with
two data files, mnist train.txt, mnist test.txt. The training set contains 2000 digits,
and the test set contains 1000 digits. Each line represents an image of size 28 × 28 by a
vector of length 784, with each feature specifying a grayscale pixel value. The first column
contains the labels of the digits, 0–9, the next 28 columns respesent the first row of the
image, and so on. We also provide two scipts written in MATLAB/Octave and Python,
show img.m, show img.py to show a single image; using these will help you have a better
understanding of what the data looks like and how it is represented.

Your linear classifier will obtain less than 15% test error, and using a Gaussian kernel you
will obtain less than 7% test error! Had you used more training data, SVM with Gaussian
kernel can get down to 1.4% test error (degree 4 polynomial obtains 1.1% test error). With
further fine-tuning (e.g., augmenting the training set by adding deformed versions of the
existing training images), a SVM-based approach can obtain 0.56% test error [2]. The
state-of-the-art, which uses a convolutional neural network, obtains 0.23% test error [1].

(a) Read in mnist train.txt, mnist test.txt and transform them into feature vectors.
Normalize the feature vectors so that each feature is in the range [-1, 1]. Since in
this dataset each feature has minimum value 0 and maximum value 255, you can do
this normalization by transforming each column ~v to 2~v/255− 1. The normalization
step can be crucial when you incorporate higher-order features. It also helps prevent
numerical difficulties while solving the SVM optimization problem.

(b) Implement multi-class prediction using one-versus-all classification. Train 10 binary
classifiers using the Pegasos algorithm from the previous question. For each classifier,
you relabel one of the labels to 1, and the other 9 labels to -1. Following learning, you
will have 10 distinct weight vectors. To predict the label of an example x, compute
the dot product of x with each weight vector, giving you 10 scores, and predict the
label with the maximum score.

(c) Instead of holding out a specific portion of your training data as a validation set, there
is another approach to estimate the test error called k-fold cross-validation. Cross-
validation is particularly useful when you have a small amount of training data. Cross-
validation divides the training data into k parts of equal size. Then, for i = 1, . . . , k,
we fit a model using all of the data except for the k’th part, and use the remaining
part to compute the validation error. Finally, we report the averaged validation error.

Implement k-fold cross-validation with k = 5, and find a model having the smallest
cross-validation error from λ = 2−5, 2−4, · · · , 21. Plot the cross-validation error vs.

http://yann.lecun.com/exdb/mnist/
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λ. What is the best λ? For this value of λ, re-train the classifier now using all of the
training data. What is the test error?

(d) We now explore the use of non-linear kernels within Support Vector Machines. We will
make use of a widely-used package libSVM and explore some of its functions. Please
download the libSVM software from http://www.csie.ntu.edu.tw/~cjlin/libsvm/

index.html. You can use any interface for libSVM such as scikit-learn (Python),
Matlab, GNU Octave, or stay in the command line.1 The library implements the
SMO algorithm described in class, which performs block coordinate descent in the
dual SVM [3, 4].

(e) Try the default setting of the libSVM, which uses the Gaussian kernel with γ =
1/num features, and C = 1. Make sure that each feature is scaled to [−1, 1] as in
problem (b) which could also be done by using svm-scale. Note that in the library,

the Gaussian kernel is of the form K(~u,~v) = e−γ‖~u−~v‖
2

(equivalent to what we showed
in class when γ = 1/2σ2) and the optimization problem is of the form

min
w,b,ξ

1

2
‖w‖2 + C

m∑
j=1

ξj

subject to yj(w · xj + b) ≥ 1− ξj ,
ξj ≥ 0.

This can be seen to be equivalent to the SVM optimization problem solved by Pegasos
when C = 1/mλ. Train on the full training set. What is the test error?

(f) Rather than using the default settings, we can choose the two parameters to be tuned
(C and γ) using cross-validation. If you prefer, you may use libSVM’s option -v for
this purpose. Report the 10-fold cross-validation error when γ and C are at their
default settings.

(g) Finally, try different γ and C values to find a model with small cross-validation error.
What were the best values that you found? What is the cross-validation error? What
is the test error for this setting?
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1If you want to use scikit-learn, a convenient way is to download a Python distribution from Anaconda, or
Enthought EPD. Both distributions provide free Intel Math Kernel Library (MKL) for academic use.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/epd/

