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Introduction to Machine Learning, Fall 2013

Problem Set 6: Hidden Markov Models and PCA
Due: Thursday, December 5, 2013 by 11am (Problem 2 requires an electronic submission to Chen-Chien.

You can either submit Problem 1 in class or as part of your electronic submission)

Important: See problem set policy on the course web site. You must show all of your work and be rigorous
in your writeups to obtain full credit.

1. Amy lives a simple life. Some days she is Angry and some days she is Happy. But she hides her emotional
state, and so all we can observe is whether she smiles, frowns, laughs, or yells. Amy’s best friend is utterly
confused about whether Amy is actually happy or angry and decides to model her emotional state using a
hidden Markov model.

Let Xd ∈ {Happy, Angry} denote Amy’s emotional state on day d, and let Yd ∈ {smile, frown, laugh, yell}
denote the observation made about Amy on day d. Assume that on day 1 Amy is in the Happy
state, i.e. X1 = Happy. Furthermore, assume that Amy transitions between states exactly once per day
(staying in the same state is an option) according to the following distribution: p(Xd+1 = Happy | Xd =
Angry) = 0.1, p(Xd+1 = Angry | Xd = Happy) = 0.1, p(Xd+1 = Angry | Xd = Angry) = 0.9, and p(Xd+1 =
Happy | Xd = Happy) = 0.9.

The observation distribution for Amy’s Happy state is given by p(Yd = smile | Xd = Happy) = 0.6, p(Yd =
frown | Xd = Happy) = 0.1, p(Yd = laugh | Xd = Happy) = 0.2, and p(Yd = yell | Xd = Happy) = 0.1. The
observation distribution for Amy’s Angry state is p(Yd = smile | Xd = Angry) = 0.1, p(Yd = frown | Xd =
Angry) = 0.6, p(Yd = laugh | Xd = Angry) = 0.1, and p(Yd = yell | Xd = Angry) = 0.2. All of this is
summarized in the following figure:
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Each question below is worth 5 points. Be sure to show all of your work!

(a) What is p(X2 = Happy)?

(b) What is p(Y2 = frown)?

(c) What is p(X2 = Happy | Y2 = frown)?

(d) What is p(Y100 = yell)?

(e) Assume that Y1 = Y2 = Y3 = Y4 = Y5 = frown. What is the most likely sequence of the states? That
is, compute the MAP assignment arg maxx1,...,x5

p(X1 = x1, . . . , X5 = x5 | Y1 = Y2 = Y3 = Y4 = Y5 =
frown).
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2. In this section, we will explore some properties of Principal Components Analysis (PCA). You may use the
programming language of your choice, but we strongly encourage you to use Matlab/Octave or Python.

Face Data: We use the Olivetti face dataset.1 The data contains 400 face images of size 64 × 64. In
faces.csv, each line represents a face image. The first 64 values represent the first column of the image,
and the next 64 values represent the second column and so on.

We provide some sample code written in MATLAB/Octave and Python (using the SciPy and Matplotlib
packages). You can find the sample code in ps6.py, ps6.m, and visualize.m. visualize.m is the function
for visualizing principal components in Matlab; a similar function for Python is in ps6.py. The sample
code shows how to load the data and display the first image.

You can find the line “Your code starts from here” in the sample code, below which you
may start writing your code. Please include all your figures in the write up, and send
your code to ccw352@nyu.edu.

(a) Display a face image chosen randomly from the 400 images.

(b) Compute and display the mean of the faces.

(c) Subtract the mean from the face images and get the centralized data matrix X, which is of dimension
m = 400 (number of images) by p = 4096 (number of pixels).

(d) Compute the singular value decomposition (SVD) of the centralized face data such that X = USV T .
The columns of V are the principal components that define the new basis. Letting W = US, we notice
that W = USV TV = XV , where we used the fact that V TV = I since V is an orthonormal matrix.
Thus, each row of W consists of the dimensionality-reduced data, i.e. the coefficients expressing the
data using the principal component coordinate system.

(e) Display images of the first 10 principal components, i.e. the first 10 columns in V . You can do this
by reshaping the principal components to 64 × 64 matrices, and plot them by imagesc in Matlab or
matplotlib.pyplot.imshow in Python.

(f) Let’s now use the first two principal components to project the data into R2 to try to better visualize
it. The i’th face will be located at (Wi1,Wi2) in the new coordinate system. Randomly choose 30 faces
and visualize the data. We provide the plotting functions visualize in Python and visualize.m in
Matlab for this purpose.

(g) Recall that the principal component can also be found by decomposing the sample covariance matrix,

that is, Λ = 1
mX

TX = 1
mV SU

TUSV T = V S2

m V T . The relation between the singular values σi given
along the diagonal of S (found using SVD on X) and the eigenvalues λi (of the sample covariance
matrix Λ) is thus given by σ2

i /m = λi.

The total variance in a data set is defined as the sum of the variances of the individual components.
Assuming that the data has aleady had its mean subtracted, we have that the total variance of the
data in the original basis is given by

TotalVar =

p∑
j=1

Var(X·j) =

p∑
j=1

1

m
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X2
ij =
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m

∑
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X2
ij =

∑
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λj ,

where in the last step we used the fact that2∑
i,j

X2
ij = trace(XTX) = trace(V S2V T ) = trace(V TV S2) = trace(S2) = m

∑
j

λj .

1The original data set can be downloaded at http://www.cs.nyu.edu/~roweis/data.html.
2 trace(M) :=

∑
i Mii is the sum of the diagonal entries of a square matrix, which has the property that trace(AB) = trace(BA).

(XTX)jj =
∑

i(X
T )ji(X)ij =

∑
i X

2
ij , and thus trace(XTX) =

∑
j(X

TX)jj =
∑

ij X
2
ij .
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We next notice that the variance of the projected data given by the k’th principal component vk (i.e.
the k’th column of V ) is given by the corresponding eigenvalue λk:

1

m
(Xvk)T (Xvk) =

1

m
vTkX

TXvk =
1

m
vTk (XTXvk) =

1

m
(vTkmλkvk) = λk.

Thus, we can calculate the proportion of variance explained by the i’th principal component as
λi/

∑
j λj = σ2

i /
∑

j σ
2
j .

Plot the proportion of variance explained by the first 10 principal components.

(h) Randomly choose a face, reconstruct it using 5, 10, 25, 50, 100, 200, 300, 399 principal components,
and show the reconstructed images.

(i) Extra credit. Reconstruct all the faces using k = 5, 10, 25, 50, 100, 200, 300, 399 principal components.
You can reconstruct all the faces at once using the formula

Rk = WkV
T
k + mean face,

where k is the number of principal components to use and the notation Mk refers to the submatrix
of M obtained by using the first k columns of M . The reconstruction error using the first k principal
components is defined as

∑
i,j(X̃ij − [Rk]ij)

2, where X̃ is the uncentralized data matrix.

For k = 1, 2, . . . , p compute the sum of the last p− k squares of singular values, i.e. Ek =
∑p

j=k+1 σ
2
j .

Plot (I) the reconstruction error as a function of k and (II) Ek as a function of k.


