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What	
  about	
  con:nuous	
  hypothesis	
  spaces?	
  

•  Con:nuous	
  hypothesis	
  space:	
  	
  
– |H|	
  =	
  ∞	
  
–  Infinite	
  variance???	
  

•  Only	
  care	
  about	
  the	
  maximum	
  number	
  of	
  
points	
  that	
  can	
  be	
  classified	
  exactly!	
  



How	
  many	
  points	
  can	
  a	
  linear	
  boundary	
  classify	
  
exactly?	
  (1-­‐D)	
  

2 Points: 

3 Points: 

etc (8 total) 

Yes!! 

No… 



ShaLering	
  and	
  Vapnik–Chervonenkis	
  Dimension	
  

A	
  set	
  of	
  points	
  is	
  sha$ered	
  by	
  a	
  hypothesis	
  
space	
  H	
  iff:	
  

– For	
  all	
  ways	
  of	
  spli+ng	
  the	
  examples	
  into	
  
posi:ve	
  and	
  nega:ve	
  subsets	
  

– There	
  exists	
  some	
  consistent	
  hypothesis	
  h	
  

The	
  VC	
  Dimension	
  of	
  H	
  over	
  input	
  space	
  X	
  
– The	
  size	
  of	
  the	
  largest	
  finite	
  subset	
  of	
  X	
  
shaLered	
  by	
  H	
  



How	
  many	
  points	
  can	
  a	
  linear	
  boundary	
  classify	
  
exactly?	
  (2-­‐D)	
  

3 Points: 

4 Points: 

Yes!! 

No… 

etc. 

5

Figure 1. Three points in R2, shattered by oriented lines.

2.3. The VC Dimension and the Number of Parameters

The VC dimension thus gives concreteness to the notion of the capacity of a given set
of functions. Intuitively, one might be led to expect that learning machines with many
parameters would have high VC dimension, while learning machines with few parameters
would have low VC dimension. There is a striking counterexample to this, due to E. Levin
and J.S. Denker (Vapnik, 1995): A learning machine with just one parameter, but with
infinite VC dimension (a family of classifiers is said to have infinite VC dimension if it can
shatter l points, no matter how large l). Define the step function θ(x), x ∈ R : {θ(x) =
1 ∀x > 0; θ(x) = −1 ∀x ≤ 0}. Consider the one-parameter family of functions, defined by

f(x, α) ≡ θ(sin(αx)), x, α ∈ R. (4)

You choose some number l, and present me with the task of finding l points that can be
shattered. I choose them to be:

xi = 10−i, i = 1, · · · , l. (5)

You specify any labels you like:

y1, y2, · · · , yl, yi ∈ {−1, 1}. (6)

Then f(α) gives this labeling if I choose α to be

α = π(1 +
l∑

i=1

(1 − yi)10i

2
). (7)

Thus the VC dimension of this machine is infinite.

Interestingly, even though we can shatter an arbitrarily large number of points, we can
also find just four points that cannot be shattered. They simply have to be equally spaced,
and assigned labels as shown in Figure 2. This can be seen as follows: Write the phase at
x1 as φ1 = 2nπ + δ. Then the choice of label y1 = 1 requires 0 < δ < π. The phase at x2,
mod 2π, is 2δ; then y2 = 1 ⇒ 0 < δ < π/2. Similarly, point x3 forces δ > π/3. Then at
x4, π/3 < δ < π/2 implies that f(x4, α) = −1, contrary to the assigned label. These four
points are the analogy, for the set of functions in Eq. (4), of the set of three points lying
along a line, for oriented hyperplanes in Rn. Neither set can be shattered by the chosen
family of functions.

[Figure from Chris Burges] 



How	
  many	
  points	
  can	
  a	
  linear	
  boundary	
  classify	
  
exactly?	
  (d-­‐D)	
  

•  A	
  linear	
  classifier	
  ∑j=1..dwjxj	
  +	
  b	
  	
  can	
  represent	
  all	
  
assignments	
  of	
  possible	
  labels	
  to	
  d+1	
  points	
  	
  
–  But	
  not	
  d+2!!	
  
–  Thus,	
  VC-­‐dimension	
  of	
  d-­‐dimensional	
  linear	
  classifiers	
  is	
  
d+1	
  

–  Bias	
  term	
  b	
  required	
  
–  Rule	
  of	
  Thumb:	
  number	
  of	
  parameters	
  in	
  model	
  o_en	
  
matches	
  max	
  number	
  of	
  points	
  	
  

•  Ques:on:	
  Can	
  we	
  get	
  a	
  bound	
  for	
  error	
  as	
  a	
  func:on	
  of	
  
the	
  number	
  of	
  points	
  that	
  can	
  be	
  completely	
  labeled?	
  



PAC	
  bound	
  using	
  VC	
  dimension	
  

•  VC	
  dimension:	
  number	
  of	
  training	
  points	
  that	
  can	
  be	
  
classified	
  exactly	
  (shaLered)	
  by	
  hypothesis	
  space	
  H!!!	
  
–  Measures	
  relevant	
  size	
  of	
  hypothesis	
  space	
  

•  Same	
  bias	
  /	
  variance	
  tradeoff	
  as	
  always	
  
–  Now,	
  just	
  a	
  func:on	
  of	
  VC(H)	
  

•  Note:	
  all	
  of	
  this	
  theory	
  is	
  for	
  binary	
  classifica:on	
  
–  Can	
  be	
  generalized	
  to	
  mul:-­‐class	
  and	
  also	
  regression	
  



What	
  is	
  the	
  VC-­‐dimension	
  of	
  rectangle	
  
classifiers?	
  

•  First,	
  show	
  that	
  there	
  are	
  4	
  points	
  that	
  can	
  be	
  
shaLered:	
  

•  Then,	
  show	
  that	
  no	
  set	
  of	
  5	
  points	
  can	
  be	
  
shaLered:	
  

[Figures from Anand Bhaskar, Ilya Sukhar] 

CS683 Scribe Notes

Anand Bhaskar (ab394), Ilya Sukhar (is56) 4/28/08 (Part 1)

1 VC-dimension

A set system (x, S) consists of a set x along with a collection of subsets of x. A subset containing A ✓ x is
shattered by S if each subset of A can be expressed as the intersection of A with a subset in S.

VC-dimension of a set system is the cardinality of the largest subset of A that can be shattered.

1.1 Rectangles

Let’s try rectangles with horizontal and vertical edges. In order to show that the VC dimension is 4 (in this
case), we need to show two things:

1. There exist 4 points that can be shattered.

It’s clear that capturing just 1 point and all 4 points are both trivial. The figure below shows how we
can capture 2 points and 3 points.

So, yes, there exists an arrangement of 4 points that can be shattered.

2. No set of 5 points can be shattered.

Suppose we have 5 points. A shattering must allow us to select all 5 points and allow us to select 4
points without the 5th.

Our minimum enclosing rectangle that allows us to select all five points is defined by only four points
– one for each edge. So, it is clear that the fifth point must lie either on an edge or on the inside of
the rectangle. This prevents us from selecting four points without the fifth.
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Generaliza:on	
  bounds	
  using	
  VC	
  dimension	
  

•  Linear	
  classifiers:	
  	
  
– VC(H)	
  =	
  d+1,	
  for	
  d	
  features	
  plus	
  constant	
  term	
  b	
  

•  Classifiers	
  using	
  Gaussian	
  Kernel	
  
– VC(H)	
  =	
   29

Figure 11. Gaussian RBF SVMs of sufficiently small width can classify an arbitrarily large number of
training points correctly, and thus have infinite VC dimension

Now we are left with a striking conundrum. Even though their VC dimension is infinite (if
the data is allowed to take all values in RdL), SVM RBFs can have excellent performance
(Schölkopf et al, 1997). A similar story holds for polynomial SVMs. How come?

7. The Generalization Performance of SVMs

In this Section we collect various arguments and bounds relating to the generalization perfor-
mance of SVMs. We start by presenting a family of SVM-like classifiers for which structural
risk minimization can be rigorously implemented, and which will give us some insight as to
why maximizing the margin is so important.

7.1. VC Dimension of Gap Tolerant Classifiers

Consider a family of classifiers (i.e. a set of functions Φ on Rd) which we will call “gap
tolerant classifiers.” A particular classifier φ ∈ Φ is specified by the location and diameter
of a ball in Rd, and by two hyperplanes, with parallel normals, also in Rd. Call the set of
points lying between, but not on, the hyperplanes the “margin set.” The decision functions
φ are defined as follows: points that lie inside the ball, but not in the margin set, are assigned
class {±1}, depending on which side of the margin set they fall. All other points are simply
defined to be “correct”, that is, they are not assigned a class by the classifier, and do not
contribute to any risk. The situation is summarized, for d = 2, in Figure 12. This rather
odd family of classifiers, together with a condition we will impose on how they are trained,
will result in systems very similar to SVMs, and for which structural risk minimization can
be demonstrated. A rigorous discussion is given in the Appendix.

Label the diameter of the ball D and the perpendicular distance between the two hyper-
planes M . The VC dimension is defined as before to be the maximum number of points that
can be shattered by the family, but by “shattered” we mean that the points can occur as
errors in all possible ways (see the Appendix for further discussion). Clearly we can control
the VC dimension of a family of these classifiers by controlling the minimum margin M
and maximum diameter D that members of the family are allowed to assume. For example,
consider the family of gap tolerant classifiers in R2 with diameter D = 2, shown in Figure
12. Those with margin satisfying M ≤ 3/2 can shatter three points; if 3/2 < M < 2, they
can shatter two; and if M ≥ 2, they can shatter only one. Each of these three families of

[Figure from Chris Burges] 

Euclidean 
distance, 
squared 

[Figure from mblondel.org] 

∞ 



Gap	
  tolerant	
  classifiers	
  

•  Suppose	
  data	
  lies	
  in	
  Rd	
  in	
  a	
  ball	
  of	
  diameter	
  D	
  
•  Consider	
  a	
  hypothesis	
  class	
  H	
  of	
  linear	
  classifiers	
  that	
  can	
  only	
  

classify	
  point	
  sets	
  with	
  margin	
  at	
  least	
  M	
  
•  What	
  is	
  the	
  largest	
  set	
  of	
  points	
  that	
  H	
  can	
  shaLer?	
  

30

classifiers corresponds to one of the sets of classifiers in Figure 4, with just three nested
subsets of functions, and with h1 = 1, h2 = 2, and h3 = 3.

M = 3/2D = 2

Φ=0

Φ=0

Φ=1

Φ=−1
Φ=0

Figure 12. A gap tolerant classifier on data in R2.

These ideas can be used to show how gap tolerant classifiers implement structural risk
minimization. The extension of the above example to spaces of arbitrary dimension is
encapsulated in a (modified) theorem of (Vapnik, 1995):

Theorem 6 For data in Rd, the VC dimension h of gap tolerant classifiers of minimum
margin Mmin and maximum diameter Dmax is bounded above19 by min{!D2

max/M2
min", d}+

1.

For the proof we assume the following lemma, which in (Vapnik, 1979) is held to follow
from symmetry arguments20:

Lemma: Consider n ≤ d + 1 points lying in a ball B ∈ Rd. Let the points be shatterable
by gap tolerant classifiers with margin M . Then in order for M to be maximized, the points
must lie on the vertices of an (n − 1)-dimensional symmetric simplex, and must also lie on
the surface of the ball.

Proof: We need only consider the case where the number of points n satisfies n ≤ d + 1.
(n > d+1 points will not be shatterable, since the VC dimension of oriented hyperplanes in
Rd is d+1, and any distribution of points which can be shattered by a gap tolerant classifier
can also be shattered by an oriented hyperplane; this also shows that h ≤ d + 1). Again we
consider points on a sphere of diameter D, where the sphere itself is of dimension d− 2. We
will need two results from Section 3.3, namely (1) if n is even, we can find a distribution of n
points (the vertices of the (n−1)-dimensional symmetric simplex) which can be shattered by
gap tolerant classifiers if D2

max/M2
min = n−1, and (2) if n is odd, we can find a distribution

of n points which can be so shattered if D2
max/M2

min = (n − 1)2(n + 1)/n2.

If n is even, at most n points can be shattered whenever

n − 1 ≤ D2
max/M2

min < n. (83)

Y=+1 

Y=-1 

Y=0 

Y=0 

Y=0 

Cannot	
  shaLer	
  these	
  points:	
  

< M

VC dimension = min

✓
d,

D2

M2

◆
M = 2� = 2

1

||w||
SVM	
  a@empts	
  to	
  
minimize	
  ||w||2,	
  which	
  
minimizes	
  VC-­‐dimension!!!	
  

[Figure from Chris Burges] 
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Y=+1 
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VC dimension = min

✓
d,

D2

M2

◆

What	
  is	
  R=D/2	
  for	
  the	
  Gaussian	
  kernel?	
  

R = max

x

||�(x)||

= max

x

p
�(x) · �(x)

= max

x

p
K(x, x)

= 1 !!!	
  

What	
  is	
  ||w||2?	
   ||w||2 =

✓
2

M

◆2

||w||2 = ||
X

i

↵iyi�(xi)||22

=
X

i

X

j

↵i↵jyiyjK(xi, xj)

[Figure from Chris Burges] 



What	
  you	
  need	
  to	
  know	
  

•  Finite	
  hypothesis	
  space	
  
–  Derive	
  results	
  
–  Coun:ng	
  number	
  of	
  hypothesis	
  

•  Complexity	
  of	
  the	
  classifier	
  depends	
  on	
  number	
  of	
  
points	
  that	
  can	
  be	
  classified	
  exactly	
  
–  Finite	
  case	
  –	
  number	
  of	
  hypotheses	
  considered	
  
–  Infinite	
  case	
  –	
  VC	
  dimension	
  

–  VC	
  dimension	
  of	
  gap	
  tolerant	
  classifiers	
  to	
  jus:fy	
  SVM	
  

•  Bias-­‐Variance	
  tradeoff	
  in	
  learning	
  theory	
  


