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What about continuous hypothesis spaces?
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* Continuous hypothesis space:
— |H| =00

— Infinite variance???

* Only care about the maximum number of

points that can be classified exactly!



How many points can a linear boundary classify
exactly? (1-D)
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etc (8 total)



Shattering and Vapnik—Chervonenkis Dimension

A set of points is shattered by a hypothesis
space H iff:

— For all ways of splitting the examples into
positive and negative subsets

— There exists some consistent hypothesis h

The VC Dimension of H over input space X

— The size of the largest finite subset of X
shattered by H



How many points can a linear boundary classify
exactly? (2-D)
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4 Points: No...

etc.

[Figure from Chris Burges]



How many points can a linear boundary classify
exactly? (d-D)

* Alinear classifier 3,_, 4w+ b canrepresent all
assignments of p055|ble 1abe|s to d+1 points

— But not d+2!!

— Thus, VC-dimension of d-dimensional linear classifiers is
d+1

— Bias term b required

— Rule of Thumb: number of parameters in model often
matches max number of points

 Question: Can we get a bound for error as a function of
the number of points that can be completely labeled?



PAC bound using VC dimension

e VCdimension: number of training points that can be
classified exactly (shattered) by hypothesis space H!!!
— Measures relevant size of hypothesis space
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errortrue(h) < errortrain(h) | \

* Same bias / variance tradeoff as always
— Now, just a function of VC(H)

* Note: all of this theory is for binary classification
— Can be generalized to multi-class and also regression



What is the VC-dimension of rectangle
classifiers?

* First, show that there are 4 points that can be
shattered:

 Then, show that no set of 5 points can be

sllattered:
/* o/*

[Figures from Anand Bhaskar, llya Sukhar]




Generalization bounds using VC dimension

J VC(H) (ln % + 1) +In%
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errorrye(h) < erroryeqin(h)+

* Linear classifiers:
— VC(H) = d+1, for d features plus constant term b

e Classifiers using Gaussian Kernel
= =22 .
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squared

[Figure from Chris Burges]

[Figure from mblondel.org]



Gap tolerant classifiers

* Suppose data lies in R in a ball of diameter D

* Consider a hypothesis class H of linear classifiers that can only
classify point sets with margin at least M

 What is the largest set of points that H can shatter?

Y=0 Cannot shatter these points:
m
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Y= Y=0
. . . D? 1 SVM attempts to

VC dimension = min |{ d, 2 M =2y = ZM minimize ||w]||?, which

minimizes VC-dimension!!!

[Figure from Chris Burges]



Gap tolerant classifiers

* Suppose data lies in R in a ball of diameter D

* Consider a hypothesis class H of linear classifiers that can only
classify point sets with margin at least M

 What is the largest set of points that H can shatter?
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[Figure from Chris Burges]



What you need to know

* Finite hypothesis space

— Derive results
— Counting number of hypothesis

 Complexity of the classifier depends on number of
points that can be classified exactly

— Finite case — number of hypotheses considered
— Infinite case — VC dimension
— VC dimension of gap tolerant classifiers to justify SVM

e Bias-Variance tradeoff in learning theory



