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Bayesian learning

* Bayesian learning uses probability to model
data and quantify uncertainty of predictions
— Facilitates incorporation of prior knowledge
— Gives optimal predictions
* Allows for decision-theoretic reasoning



Your first consulting job

* A billionaire from the suburbs of Manhattan asks
you a question:

— He says: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

— You say: Please flip it a few times:
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— You say: The probability is:
e P(heads) =3/5

— He says: Why???

— You say: Because...



Random Variables

 Arandom variable is some aspect of the world about
which we (may) have uncertainty
— R =ls it raining?
— D = How long will it take to drive to work?
— L =Where am |?

 \We denote random variables with capital letters

 Random variables have domains
— Rin {true, false} (sometimes write as {+r, —r})
— Din [0, «)
— L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

Discrete random variables have distributions

P(T) P(W)
T P W P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0

A discrete distribution is a TABLE of probabilities of values
The probability of a state (lower case) is a single number

P(W = rain) = 0.1 P(rain) = 0.1

Must have:
Vo P(x) > 0 ZP(:L') =1
X



Joint Distributions

« A joint distribution over a set of random variables: X1, Xo,...Xn
specifies a real number for each assignment:

P(X1=z1,X0 =z2,... Xn = zpn) P(T,W)

P(x1,x2,...2n) T I wlp

— How many assignments if n variables with domain sizes d?| hot | sun | 0.4

hot rain | 0.1

— Must obey:

P(gjl’ o, ... mn) >0 cold | sun | 0.2

cold | rain | 0.3
Z P(:Cl,xz,...a?n):].
(33173327"'3371)

* For all but the smallest distributions, impractical to write out or estimate
— Instead, we make additional assumptions about the distribution



Marginal Distributions

Marginal distributions are sub-tables which eliminate variables
Marginalization (summing out): Combine collapsed rows by adding

P(T)

P(T, W) T | P
T ——— [ =
hot | sun 04| P{)= ZP(taw) = :

hot | rain 0.1 w P(W)

cold sun 0.2 — W P

cold rain 0.3 P(w) = ZP(t,w) sun 0.6

rain 0.4

P(X1==1) =Y P(X1=uz1,X0=x2)
40



Conditional Probabilities

« A simple relation between joint and conditional probabilities
— In fact, this is taken as the definition of a conditional probability

P(a,b)
P(a,b
P(G‘b) — (a’7 )
P(b)
P(T, W) P(a) P(b)
T W P
hot sun 0.4 P(W =r|T =c) =777
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Conditional Distributions

« Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

W P
sun 0.8
rain 0.2

P(W|T = cold)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Y P
sun 0.4
rain 0.6




 Example:

P(W)

W P

sun 0.8

rain 0.2

The Product Rule

« Sometimes have conditional distributions but want the joint

(m) P(z,y) = P(zly)P(y)

P(x,y)
P(y)
P(D|W)
D W P
wet sun 0.1
dry sun | 0.9
wet rain 0.7
dry rain | 0.3

=)

P(D,W)

D W P
wet sun 0.08
dry sun | 0.72
wet rain | 0.14
dry rain | 0.06




Bayes' Rule

Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)
Dividing, we get:

Paly) = 50

Why is this at all helpful?
— Let’s us build one conditional from its reverse
— Often one conditional is tricky but the other one is simple
— Foundation of many practical systems (e.g. ASR, MT)

P(x)

In the running for most important ML equation!



Returning to thumbtack example...
 P(Heads) =0, P(Tails) =1-0
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* Flipsareiid.: D={x|i=1..n}, P(D|0)=TLP(x,| 0)
— Independent events

— Identically distributed according to Bernoulli
distribution

* Sequence D of o, Heads and o Tails

P(D|0) =0%(1—0)T

Called the “likelihood” of the data under the model



Maximum Likelihood Estimation

Data: Observed set D of o, Heads and o; Tails
Hypothesis: Bernoulli distribution
Learning: finding 0 is an optimization problem
— What'’s the objective function?

P(D|60) =0%H(1 — 0)°T
MLE: Choose 0 to maximize probability of D

AN

0 = arg m@ax P(D | 0)
arg m@ax In P(D | 6)



Your first parameter learning algorithm

# = argmax InP(D]0)

0

= argmax Inf“H(1 — 9)°T

0

e Set derivative to zero, and solve!
d% InP(D|0) = d% [ING“H (1 — 0)T]
= dilé’ [apInf + arin(l —0)]
= oszie In6 + oszie In(1 —6)
Z%—la_TH =0 OvLE =

CH

ap + ar
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(6; D) = In P(D|6)
L(0;

L(6:D)




What if | have prior beliefs?

* Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

* Rather than estimating a single 0, we obtain a
distribution over possible values of 0

In the beginning After observations

Beta(2,2) Beta(3,2)

Observe flips Pr(6 | D)
e.g.: {tails, tails}
>

Pr(6) 4
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Bayesian Learning

L Prior
e Use Bayes’ rule! Data Likelihood ( 1
P(D|0)P(6
P D) = D@IOPE)
’ osterlolr /, p(p)
T \ Normalization

* Orequivalently: P(0 | D) o« P(D|0)P(H)
* For uniform priors, this reduces to

maximum likelihood estimation!

P(#) x1 P(6|D)xP(D|06)



Bayesian Learning for Thumbtacks

PO | D) x P(D|0)P(6)
Likelihood: P(D | 0) = 0%H(1 — 0)%T

 What should the prior be?
— Represent expert knowledge
— Simple posterior form

* For binary variables, commonly used prior is the
Beta distribution:

9Pn—1(1 — 9)Pr—1

PO = 56 80)

~ Beta(Bg, Br)




Beta prior distribution — P(0)

6fn—1(1 — 9)Pr—1
~ Bet ,
B(Bu, Br) et P, fr)

Beta(1,1) . e Beta(2,2) Beta(3,2) . Beta(30,20)

P(0) =

Beta pdf
o o o o

Beta pdf
pdf

0.
meter value

* The posterior distribution:

PO |D) x P(D|6)P(6)
x 07 (1 — 0)*T gPr—1(1 — g)Pr—1
_ QOéH—FﬁH—l(l . Q)OéT—l—ﬁtJrl

— Bet(l(OzH—l-ﬁH, OéT—|—ﬁT)



