Bayesian methods & Naïve Bayes Lecture 18

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$



The posterior distribution:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

$$\propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}$$

$$= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_t + 1}$$

$$= Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

Using Bayesian inference for prediction

- We now have a distribution over parameters
- For any specific f, a function of interest, compute the expected value of f:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- Integral is often hard to compute
- As more data is observed, prior is more concentrated
- MAP (Maximum a posteriori approximation): use most likely parameter to approximate the expectation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$E[f(\theta)] \approx f(\widehat{\theta})$$

MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

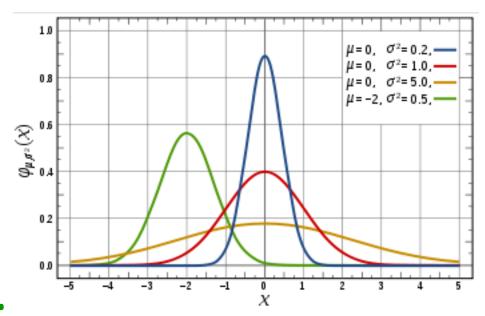
MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra thumbtack flips
- As $N \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...



$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Some properties of Gaussians

 Affine transformation (multiplying by scalar and adding a constant) are

Gaussian

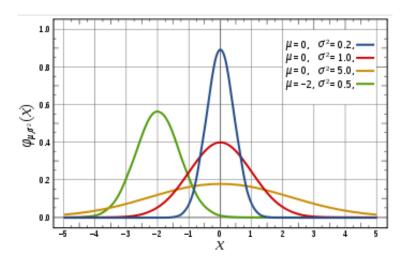
$$- X \sim N(\mu, \sigma^2)$$

$$- Y = aX + b \rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$$

$$- X \sim N(\mu_x, \sigma^2_x)$$

$$- Y \sim N(\mu_{Y}, \sigma^{2}_{Y})$$

$$-Z = X+Y \rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$$



Easy to differentiate, as we will see soon!

Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - -e.g., exam scores
- Learn parameters
 - -Mean: μ
 - Variance: σ

x_i $i =$	Exam Score
0	85
1	95
2	100
3	12
•••	•••
99	89

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian: $P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$

• Prob. of i.i.d. samples $D=\{x_1,...,x_N\}$:

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

$$\mu_{MLE}, \sigma_{MLE} = \arg\max_{\mu, \sigma} P(\mathcal{D} \mid \mu, \sigma)$$

Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

Your second learning algorithm: MLE for mean of a Gaussian

What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = 0$$

$$= \sum_{i=1}^{N} x_i - N\mu = 0$$

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

MLE for variance

Again, set derivative to zero:

$$\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= -\frac{N}{\sigma} + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^3} = 0$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

Learning Gaussian parameters

MLE:

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- MLE for the variance of a Gaussian is biased
 - Expected result of estimation is **not** true parameter!
 - Unbiased variance estimator:

$$\widehat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

Bayesian learning of Gaussian parameters

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution

• Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

Naïve Bayes

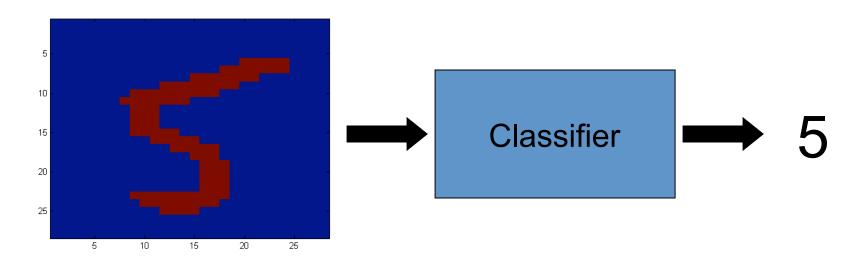
Slides adapted from Vibhav Gogate, Jonathan Huang, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld

Bayesian Classification

- Problem statement:
 - Given features $X_1, X_2, ..., X_n$
 - Predict a label Y

Example Application

Digit Recognition



- $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)
- $Y \in \{0,1,2,3,4,5,6,7,8,9\}$

The Bayes Classifier

• If we had the joint distribution on $X_1,...,X_n$ and Y, could predict using:

$$\operatorname{arg\,max}_{Y} P(Y|X_1,\ldots,X_n)$$

 (for example: what is the probability that the image represents a 5 given its pixels?)

So ... How do we compute that?

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
 Normalization Constant

 Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5 | X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y = 5) P(Y = 5)}{P(X_1, ..., X_n | Y = 5) P(Y = 5) + P(X_1, ..., X_n | Y = 6) P(Y = 6)}$$

$$P(Y = 6 | X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y = 6) P(Y = 6)}{P(X_1, ..., X_n | Y = 5) P(Y = 5) + P(X_1, ..., X_n | Y = 6) P(Y = 6)}$$

 To classify, we'll simply compute these probabilities, one per class, and predict based on which one is largest

Model Parameters

- How many parameters are required to specify the likelihood, $P(X_1,...,X_n|Y)$?
 - (Supposing that each image is 30x30 pixels)
- The problem with explicitly modeling $P(X_1,...,X_n|Y)$ is that there are usually way too many parameters:
 - We'll run out of space
 - We'll run out of time
 - And we'll need tons of training data (which is usually not available)

Naïve Bayes

- Naïve Bayes assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

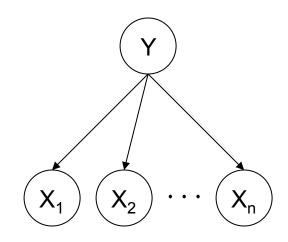
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose **X** is composed of *n* binary features

The Naïve Bayes Classifier

Given:

- Prior P(Y)
- n conditionally independent features X given the class Y
- For each X_i, we have likelihood P(X_i|Y)



Decision rule:

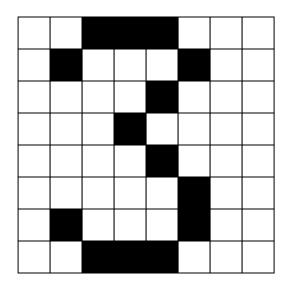
$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

= $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$

If certain assumption holds, NB is optimal classifier! (they typically don't)

A Digit Recognizer

Input: pixel grids



Output: a digit 0-9

Naïve Bayes for Digits (Binary Inputs)

- Simple version:
 - One feature F_{ii} for each grid position <i,j>
 - Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.

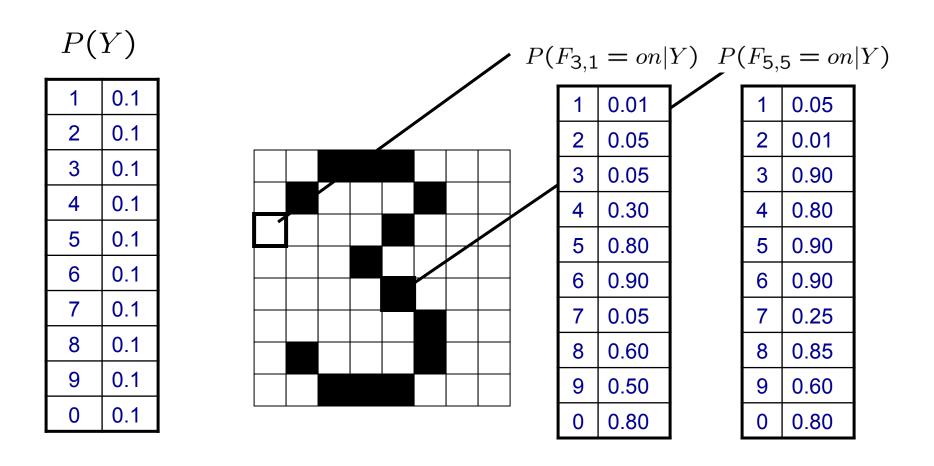
$$\rightarrow \langle F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \dots F_{15,15} = 0 \rangle$$

- Here: lots of features, each is binary valued
- Naïve Bayes model:

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

- Are the features independent given class?
- What do we need to learn?

What has to be learned?



MLE for the parameters of NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and
 B=b
- MLE for discrete NB, simply:
 - Prior:

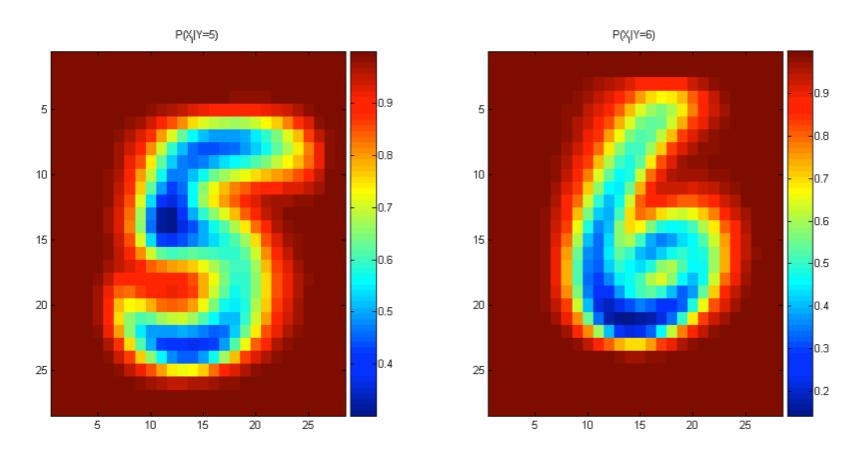
$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

MLE for the parameters of NB

 Training amounts to, for each of the classes, averaging all of the examples together:



MAP estimation for NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and
 B=b
- MAP estimation for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + a}{\sum_{x'} Count(X_i = x', Y = y) + |X_i|^*a}$$

Called "smoothing". Corresponds to Dirichlet prior!