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* The posterior distribution:
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Using Bayesian inference for prediction

 We now have a distribution over parameters

* For any specific f, a function of interest, compute the
expected value of f:

1
BIf(0)] = [ f(0)P(6| D)do

* Integral is often hard to compute
 As more data is observed, prior is more concentrated

e MAP (Maximum a posteriori approximation): use most
likely parameter to approximate the expectation

§ = arg max P(6 | D)
E[f(0)] =~ f(0)
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MAP for Beta distribution ===~
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* MAP: use most likely parameter:

R ag + B —1
0 =argmax P(0 | D) = 55, “ar 15 2

« Beta prior equivalent to extra thumbtack flips
« As N — oo, prior is “forgotten”
 But, for small sample size, prior is important!



What about continuous variables?

* Billionaire says: If | am
measuring a
continuous variable,
what can you do for
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Some properties of Gaussians

e Affine transformation (multiplying by

scalar and adding a constant) are
Gaussian

- X" N(MIOZ) _
—Y=aX+b—=2>Y"~N(au+b,a’0?)
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e Sum of Gaussians is Gaussian
- X" N(MX,OZX)

=0, 22 () 2, w—

— Y~ N(w,,0%) |
— Z=X+Y =2 Z~ N(uy+uy, 04+0?%)

e Easy to differentiate, as we will see soon!



Learning a Gaussian

e Collect a bunch of data

—Hopefully, i.i.d. samples Lo
—e.g., exam scores S
3 12
* Learn parameters
—Mean:
—Viean- 4 99 89
—\Variance: o
1 @2
P(e| o) = e 20
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MLE for Gaussian: P |u,0) =
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* Prob. of i.i.d. samples D={x,...,X\}:
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* Log-likelihood of data:
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Your second learning algorithm:
MLE for mean of a Gaussian

e What’s MLE for mean?
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MLE for variance

* Again, set derivative to zero:

d d N(z )
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Learning Gaussian parameters

 MLE: 1 é\f:
UMLE = — ) %
N/
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e MLE for the variance of a Gaussian is biased

— Expected result of estimation is not true parameter!

— Unbiased variance estimator: N

1
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Bayesian learning of Gaussian
parameters

* Conjugate priors
— Mean: Gaussian prior

— Variance: Wishart Distribution

* Prior for mean:
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Naive Bayes

Slides adapted from Vibhav Gogate, Jonathan Huang,
Luke Zettlemoyer, Carlos Guestrin, and Dan Weld



Bayesian Classification

* Problem statement:
— Given features X, X,,...,X,
— Predict a label Y



Example Application

* Digit Recognition

XX, € {0,1} (Black vs. White pixels)
* Y&{0,1,2,3,4,5,6,7,8,9}



The Bayes Classifier

* If we had the joint distribution on X,,...,X, and Y, could predict
using:

argmax P(Y|X1,...,X,)

— (for example: what is the probability that the image
represents a 5 given its pixels?)

* So .. How do we compute that?



The Bayes Classifier

* Use Bayes Rule!

Likelihood Prior

\ /
P(X,,..., X,[V)P(Y)

Normalization Constant

 Why did this help? Well, we think that we might be able to
specify how features are “generated” by the class label



The Bayes Classifier

* Let’s expand this for our digit recognition task:

[ /= J —
P(Y: 5|4Y1,...,)(n) = P(‘Xla'--ax nI) = 5)P() = 5)

P(Y =6X1,...,X,) =

* To classify, we'll simply compute these probabilities, one per

class, and predict based on which one is largest

P(Xi1,...,X,[Y =5)P(Y =5) + P(X1,...,X,|Y = 6)P(Y = 6)
P(X1,...,X,|Y = 6)P(Y = 6)
P(Xi1,...,Xa|Y =5)P(Y =5) + P(X1,...,Xa|Y = 6)P(Y = 6)



Model Parameters

* How many parameters are required to specify the likelihood,
P(Xy,...,.X ]Y)?
— (Supposing that each image is 30x30 pixels)

* The problem with explicitly modeling P(X,...,X |Y) is that
there are usually way too many parameters:

— WEe’'ll run out of space

— We'll run out of time

— And we’ll need tons of training data (which is usually not
available)



Nailve Bayes

* Naive Bayes assumption:
— Features are independent given class:
P(X1, XolY) = P(X1[X2,Y)P(X3|Y)
= P(X1]Y)P(X2]Y)

— More generally:

P(X1..Xn|Y) = HP(Xi|Y)

* How many parameters now?

* Suppose X is composed of n binary features



The Naive Bayes Classifier

* Given:
— Prior P(Y) °

— n conditionally independent
features X given the class Y

— For each X, we have
likelihood P(X.|Y) Q @ @

e Decision rule:
y* — hNB(X) — Jard manP(y)P(.CE]_, ey I | y)
= arg myaxP(y)HP(afily)
i

If certain assumption holds, NB is optimal classifier!
(they typically don't)



A Digit Recognizer

* Input: pixel grids

* Qutput: a digit 0-9
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Nailve Bayes for Digits (Binary Inputs)

« Simple version:
— One feature F; for each grid position <i,j>

— Possible feature values are on / off, based on whether intensity
IS more or less than 0.5 in underlying image

— Each input maps to a feature vector, e.g.
A~ (Foo=0Fo1=0Fop=1Foa=1 Foa=0 ...Fis;5=0)

— Here: lots of features, each is binary valued
* Nalve Bayes model:
P(Y|Fop-..F1515) o< P(Y) ][] P(F; ;1Y)
]
* Are the features independent given class?
 What do we need to learn?



What has to be learned?

P(Y) P(F31 =on|Y) P(Fs55=onlY)
1|01 1 | 0.01 v 1 [0.05
2 101 2 10.05 2 |0.01
3 |0.1 3 10.05 3 10.90
4 101 / 4 10.30 4 0.80
5 [0.1 5 | 0.80 5 | 0.90
6 |0.1 6 | 0.90 6 | 0.90
7 0.1 7 10.05 7 10.25
8 |0.1 8 | 0.60 8 | 0.85
9 [0.1 9 | 0.50 9 | 0.60
0 |01 0 | 0.80 0 | 0.80




MLE for the parameters of NB

e Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

* MLE for discrete NB, simply:

— Prior:

Count(Y =y)
Dy Count(Y =)

PY =y) =

— Observation distribution:

P(X; = 2|y = y) = Count(X; =x,Y = y)

> Count(X; =2/, Y =vy)



MLE for the parameters of NB

* Training amounts to, for each of the classes, averaging all of
the examples together:
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MAP estimation for NB

 Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

 MAP estimation for discrete NB, simply:
— Prior:

Count(Y =y)
Dy Count(Y =)

PY =y) =

— Observation distribution:

Count(X; =x,Y =y) +a

P(Xz — :C’Y — y) — le CO’U,’Rt(Xz — Qj/7Y — y) + |X_i|*a

e Called “smoothing”. Corresponds to Dirichlet prior!



