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Nalve Bayes

* Naive Bayes assumption:
— Features are independent given class:

P(X1..Xn|Y) = HP(Xi|Y)

7

e Decision rule for classification:
y* — hNB(X) — Jargd manP(y)P(iE]_, R 0} ‘ y)
= arg myaxP(y)HP(:vi\y)
;



What about if there is missing data?

* One of the key strengths of Bayesian approaches is that
they can naturally handle missing data
« Suppose don’t have value for some attribute X;

« applicant’s credit history unknown
« some medical test not performed on patient
« how to compute P(X,=x; ... X=? ... X;=X,| ¥)

. Easy with Naive Bayes

— d
« ignore attribute in instance P(Xl...ﬁ...xdly)-H?jp(xljy)
where its value is missing s

« compute likelihood based on observed attributes
« Nno need to “fill in” or explicitly model missing values
. based on conditional independence between attributes

[Slide from Victor Lavrenko and Nigel Goddard]



What about if there is missing data?

« Ex: three coin tosses: Event = {X,=H, X,=?, X;=T}

« event = head, unknown (either head or tail), tail

- event={H HT}+ {HTT}

X =H

. P(event) = P(H,H,T) + P(H,T,T) X=H
* General case: X; has missing value
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[Slide from Victor Lavrenko and Nigel Goddard]
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Naive Bayes = Linear Classifier

® Theorem:assume that x; € {0,1}for all i € [1, N].
Then, the Naive Bayes classifier is defined by

X — sgn(w - X + b),

[Slide from Mehyrar Mohri]



Logistic Regression

Learn P(Y|X) directly!

1 Assume a particular functional form

# Linear classifier? On one side we say P(Y=1|X)=1, and on
the other P(Y=1|X)=0

# But, this is not differentiable (hard to learn)... doesn’t
allow for label noise...




Logistic Regression

Logistic function (Sigmoid):

Learn P(Y|X) directly!

- Assume a particular 1
functional form L 1te

Sigmoid applied to a linear
function of the data:

-6 -4 -2 0 2 4
Z
P(Y = 1|X) = :
1+ exp(wo + LiL; wiXi) Features can be
p(y = o[x) = P00+ KLy wiXi discrete or



Logistic Function in n Dimensions

1

POV = 11X) = 1+ exp(wp + X7 1 w; X;)

Sigmoid applied to a linear function of the data:
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Features can be discrete or continuous!



Logistic Regression: decision boundary

! exp(wo+ Y wiXi)

P(Y =1X) =

n ox) PY=0X)=
1 +exp(wo+ Y wiXi) ( X) 1 +exp(wo+ Y7 wiXi)

* Prediction: Output the Y with
highest P(Y|X)
— For binary Y, output Y=0 if

P(Y = 0|X)
P(Y = 1X)

1 <

n
1 < exp(wo+ Z wiX;)
i=1

n

0<wo+ Z w;X;
i=1

A Linear Classifier!




Likelihood vs. Conditional Likelihood

Generative (Naive Bayes) maximizes Data likelihood

N
INP(D|w) = Y InP(x?,y | w)
j=1
= > InP |x),w)+ > InPx)|w)
j=1 j=1

Discriminative (Logistic Regr.) maximizes Conditional Data Likelihood

N
In P(Dy | Dx,w) = > InP(y’ | x/,w)
=1

Focuses only on learning P(Y|X) - all that matters for classification



Maximizing Conditional Log Likelihood

I(w) =

= Zyj(’wo-l-f:
J '\ i

N
J

[P 1%, w)

0 or1!

P(Y =0|X,W) =

P(Y =1|X,W) =

1+ exp(wg + >; w; X;)
exp(wg + X w; X;)

1+ exp(wg + >; w; X;)

wiz!) — In(1 + exp(wo + > wiz)))

Bad news: no closed-form solution to maximize /(w)

Good news: I(w) is concave function of w—

No local minima

Concave functions easy to optimize



Optimizing concave function —
Gradient ascent

* Conditional likelihood for Logistic Regression is concave —

ol(w) ol(w)

>t

Gradient: ¢ 1(w) = [ ; %

|l Learning rate, n>0
!

- Update rule:

| P Aw = nVwl(w)

WD O 4y ol(w)

8’(1)7;

awn




Maximize Conditional Log Likelihood: Gradient ascent

exp(wo + >2; w; X;)
1+ exp(wg + >; w; X;)

P(Y =1|X,W) =

(W) = Yy (wo+ > wiw)) — In(1 + exp(wo + > wiz)))
7 () ()

a—w — Z [a’UJ,y (’UJO -+ zz:wzxz) (9w,|n 1 ‘I‘eXp(wO _I_zz:wzmz)

J

i ZE‘Z exp(wo + > _, w@xf)
=D |V -
J

1+ exp(wo + >, wzxf)

1+ exp(wo + >, wzxi)

J




Gradient Ascent for LR

Gradient ascent algorithm: (learning rate r > 0)

do:
wi T — w0 Y~ P(YT =1 %, w)]
J

For i=1 to n: (iterate over features)

wi™ — w4 S al - P(YT = 1| %, w))
j

until “change” < ¢ \

Loop over training examples!



That’s all MLE. How about MAP?
p(w|Y,X) o« P(Y|X,w)p(w)

e One common approach is to define priors on w

— Normal distribution, zero mean, identity covariance
— “Pushes” parameters towards zero 1

p(W)=Hm/%

* Regularization

— Helps avoid very large weights and overfitting

* MAP estimate: v

% __ J | xJ
w" = arg maxin p(wW) 'Hl P(y’ | x/,w)
]:

—w

@.M




MAP as Regularization

N 1 1

* — arg max | Py | xJ, W) = e 2r2
wh=argmgxin p(w) [1 PG 1< w)| - P(W) S v

* Add log p(w) to objective:

Inp(w)oc—%z:wi2 0Inp(w) —

(‘9wi

— )\wz

— Quadratic penalty: drives weights towards zero
— Adds a negative linear term to the gradients

Penalizes high weights, just like we did with SVMs!






Naive Bayes vs. Logistic Regression

Learning: h:X— Y X — features
Y — target classes

Generative Discriminative
 Assume functional form for  Assume functional form for
— P(X]Y) assume cond indep — P(Y|X) no assumptions
— P(Y)
— Est. params from train data — Est params from training data

e Gaussian NB for cont. features ¢ Handles discrete & cont features
e Bayes rule to calc. P(Y|X=x):

— P(Y | X) o< P(X | Y) P(Y)
* Indirect computation e Directly calculate P(Y|X=x)

— Can generate a sample of the data — Can’t generate data sample
— Can easily handle missing data



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

e Generative vs. Discriminative classifiers

Asymptotic comparison
(# training examples =2 infinity)
— when model correct

* NB, Linear Discriminant Analysis (with class independent
variances), and Logistic Regression produce identical
classifiers

— when model incorrect

e LR is less biased — does not assume conditional
independence

—therefore LR expected to outperform NB



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

 Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
* Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
 Logistic Regression needs O(n) samples

— Naive Bayes converges more quickly to its (perhaps
less helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes,



Logistic regression for discrete

classification

Logistic regression in more general case, where
set of possible Yis {y,,...,yr}

Define a weight vector w, for each y,, i=1,...,R-1

P(Y =11X) o exp(wip + Z w1 X;) P(Y=y,|X)
U biggest
P(Y =2|X) o exp(wog + ZinXz')
( A .
r—1 P(Y=y,lX) \ i
PY =r|X)=1-) P(Y =j|X) biggest =

g=1



Logistic regression for discrete
classification

* Logistic regression in more general case, where
Yisin the set {y,,...,yg}

for k<R
exp(wgo + i wi X;)
1+ 2551 exp(wjo + X g wyiX;)

P(Y = y|X) =

for k=R (normalization, so no weights for this class)

1
1+ Zfz_ll exp(w;o + X1 q w;; X;)

P(Y = yg|X) =

Features can be discrete or continuous!



