Recommender Systems Collaborative Filtering and Matrix Factorization

Narges Razavian

Recommender systems

We Know What You Ought To Be Watching This Summer

Amazon.com

An example

Training data

Test data

user	movie	score	
1	21	1	
1	213	5	
2	345	4	
2	123	4	
2	768	3	
3	76	5	
4	45	4	
5	568	1	
5	342	2	
5	234	2	
6	76	5	
6	56	4	

user	movie	score
1	62	?
1	96	?
2	7	?
2	3	?
3	47	?
3	15	?
4	41	?
4	28	?
5	93	?
5	74	?
6	69	?
6	83	?

Two basic approaches

- Content-based recommendations:
 - The user will be recommended items based on profile information or similar to the ones the user preferred in the past;
- Collaborative filtering (or collaborative recommendations):
 - The user will be recommended items that people with similar tastes and preferences liked in the past.
- Hybrids: Combine collaborative and content-based methods.

Road Map

- Introduction
- Content-based recommendation
- Collaborative filtering based recommendation
 - K-nearest neighbor
 - Matrix factorization

Content-Based Recommendation

- Recommend items that matches the User
 Profile.
- The Profile is based on items user has liked in the past or explicit interests that he defines.
- A content-based recommender system matches the profile of the item to the user profile to decide on its relevancy to the user.

Road Map

- Introduction
- Content-based recommendation
- Collaborative filtering based recommendations
 - K-nearest neighbor
 - Matrix factorization

Collaborative Filtering Idea

Collaborative filtering

- Collaborative filtering (CF): most widely-used recommendation approach in practice.
 - k-nearest neighbor,
 - matrix factorization
- Key characteristic of CF: it predicts the utility of items for a user based on the items previously rated by **other like-minded users**.

k-Nearest Neighbor

• *k*NN:

- utilizes the entire user-item database to generate predictions directly, i.e., there is no model building.
- This approach includes both
 - User-based methods
 - Item-based methods
- Two primary phases:
 - the neighborhood formation phase and
 - the recommendation phase.

Neighborhood formation phase

 The similarity between the target user, u, and a neighbor, v, can be calculated using the Pearson's correlation coefficient:

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})^2}},$$

 r_{u,i} is the rating given to item I by user u. C is the list of items rated by BOTH users, u and v

Recommendation Phase

 Then we can compute the rating prediction of item i for target user u

$$p(\mathbf{u}, i) = \overline{r}_{\mathbf{u}} + \frac{\sum_{\mathbf{v} \in V} sim(\mathbf{u}, \mathbf{v}) \times (r_{\mathbf{v}, i} - \overline{r}_{\mathbf{v}})}{\sum_{\mathbf{v} \in V} \left| sim(\mathbf{u}, \mathbf{v}) \right|}$$

where V is the set of k similar users(could be all users), $r_{\mathbf{v},i}$ is the rating of user \mathbf{v} given to item i,

Issue with the user-based kNN CF

- Lack of scalability:
 - it requires the real-time comparison of the target user to all user records in order to generate predictions.
 - Any suggestions to improve this?
- A variation of this approach that remedies this problem is called item-based CF.

Item-based CF

 The item-based approach works by comparing items based on their pattern of ratings across users. The similarity of items i and j is computed as follows:

$$sim(i,j) = \frac{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})}{\sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})^2}}$$

Recommendation phase

 After computing the similarity between items we select a set of k most similar items to the target item and generate a predicted value of user u's rating

$$p(\mathbf{u}, i) = \frac{\sum_{j \in J} r_{\mathbf{u}, j} \times sim(i, j)}{\sum_{j \in J} sim(i, j)}$$

where *J* is the set of *k* similar items

Practical Issues: Cold Start

- New user
 - Rate some initial items
 - Non-personalized recommendations
 - Describe tastes
 - Demographic info.
- New Item
 - Non-CF: content analysis, metadata

Road Map

- Introduction
- Content-based recommendation
- Collaborative filtering based recommendations
 - K-nearest neighbor
 - Matrix factorization

Latent factor models

Latent factor models

		.1	4	.2
~	ite	5	.6	.5
. •	items	2	.3	.5
		1.1	2.1	.3
		7	2.1	-2
		-1	.7	.3

Estimate unknown ratings as inner-products of factors:

Estimate unknown ratings as inner-products of factors:

Estimate unknown ratings as inner-products of factors:

Challenges

- Similar to SVD, but less constrained:
 - Factorize with missing values!
- Re-define objective function:

$$\underset{p,q}{\text{minimize}} \sum_{(u,i)\in S} (r_{ui} - \langle p_u, q_i \rangle)^2 + \lambda \left[\|p\|_{\text{Frob}}^2 + \|q\|_{\text{Frob}}^2 \right]$$

To avoid over-fitting

Can use gradient descent to deal with missing values

Stochastic Gradient Descent

For each data point,

$$e_{ui} = r_{ui} - q_i^T p_u.$$

• Derivatives on variables (q and p) are used for update: $q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$

$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

- Both p and q are unknown, so we have to alternate
 - Will converge to local optima

Incorporating bias

- Some users rate movies higher than others
- Some movies get hyped and get higher ratings
- The new model: $\hat{r}_{ij} = \mu + b_i + b_j + q_i^T p_{ij}$
- The new objective function

minimize
$$\sum_{(u,i)\in S} (r_{ui} - (\mu + b_u + b_i + \langle p_u, q_i \rangle))^2 + \lambda \left[\|p\|_{\text{Frob}}^2 + \|q\|_{\text{Frob}}^2 + \|b_{\text{users}}\|^2 + \|b_{\text{items}}\|^2 \right]$$

• Derivatives:
$$p_u \leftarrow (1 - \lambda \eta_t) p_u - \eta_t q_i \rho_{ui}$$

$$q_i \leftarrow (1 - \lambda \eta_t) q_i - \eta_t p_u \rho_{ui}$$

$$b_u \leftarrow (1 - \lambda \eta_t) b_u - \eta_t \rho_{ui}$$

$$b_i \leftarrow (1 - \lambda \eta_t) b_i - \eta_t \rho_{ui}$$

$$\mu \leftarrow (1 - \lambda \eta_t) \mu - \eta_t \rho_{ui}$$

$$\text{where } \rho_{ui} = (r_{ui} - (\mu + b_i + b_u + \langle p_u, q_i \rangle))$$

Further modeling assumptions

Changing preferences over time?

$$\hat{r}_{ui}(t) = \mu + b_i(t) + b_u(t) + q_i^T p_u(t)$$

Varying confidence levels in ratings?

$$\min_{p^*, q^*, b^*} \sum_{(u, i) \in \kappa} c_{ui} (r_{ui} - \mu - b_u - b_i) \\
- p_u^T q_i)^2 + \lambda \left(||p_u||^2 + ||q_i||^2 + b_u^2 + b_i^2 \right)$$

Other ideas?

Summary

- Recommendation based on
 - Content
 - Collaborative filtering
- Collaborative filtering
 - Neighborhood method
 - Matrix Factorization
- Possible Further topics
 - Hybrid models of content and collaborative to impute missing values and deal with cold start