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ML Methodology 
•  Data: labeled instances, e.g. emails marked spam/ham 

–  Training set 
–  Held out set (sometimes call Validation set) 
–  Test set 

Randomly allocate to these three, e.g. 60/20/20 

•  Features: attribute-value pairs which characterize each x 

•  Experimentation cycle 
–  Select a hypothesis f 
     (Tune hyperparameters on held-out or validation set) 

–  Compute accuracy of test set 

–  Very important: never “peek” at the test set! 

•  Evaluation 
–  Accuracy: fraction of instances predicted correctly 

Training 
Data 

Held-Out 
Data 

Test 
Data 



Linear Separators 

  Which of these linear separators is optimal?  



  SVMs (Vapnik, 1990’s) choose the linear separator with the 
largest margin 

•  Good according to intuition, theory, practice 

•  SVM became famous when, using images as input, it gave 
accuracy comparable to neural-network with hand-designed 
features in a handwriting recognition task 

Support Vector Machine (SVM) 

V. Vapnik 

Robust to 
outliers! 



Planes and Hyperplanes 

Linear Algebra
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Figure 29.3: A plane can be specified by a point in the
plane, a and two, non-parallel directions in the plane,
u and v. The normal to the plane is unique, and in
the same direction as the directed line from the origin
to the nearest point on the plane.

An alternative definition is given by considering that any vector within the plane must be orthogonal to the
normal of the plane n.

(p� a) · n = 0 , p · n = a · n (29.1.12)

The right hand side of the above represents the shortest distance from the origin to the plane, drawn by
the dashed line in fig(29.3). The advantage of this representation is that it has the same form as a line.
Indeed, this representation of (hyper)planes is independent of the dimension of the space. In addition, only
two quantities need to be defined – the normal to the plane and the distance from the origin to the plane.

29.1.5 Matrices

An m ⇥ n matrix A is a collection of scalar values arranged in a rectangle of m rows and n columns. A
vector can be considered as an n ⇥ 1 matrix. The i, j element of matrix A can be written Aij or more
conventionally aij . Where more clarity is required, one may write [A]ij .

Definition 29.3 (Matrix addition). For two matrices A and B of the same size,

[A+B]ij = [A]ij + [B]ij (29.1.13)

Definition 29.4 (Matrix multiplication). For an l by n matrix A and an n by m matrix B, the product
AB is the l by m matrix with elements

[AB]ik =
n
X

j=1

[A]ij [B]jk ; i = 1, . . . , l k = 1, . . . ,m . (29.1.14)

Note that in general BA 6= AB. When BA = AB we say that they A and B commute. The matrix I is
the identity matrix , necessarily square, with 1’s on the diagonal and 0’s everywhere else. For clarity we may
also write Im for a square m ⇥ m identity matrix. Then for an m ⇥ n matrix A, ImA = AIn = A. The
identity matrix has elements [I]ij = �ij given by the Kronecker delta:

�ij ⌘
⇢

1 i = j
0 i 6= j

(29.1.15)

Definition 29.5 (Transpose). The transpose BT of the n by m matrix B is the m by n matrix with
components

h

BT

i

kj
= Bjk ; k = 1, . . . ,m j = 1, . . . , n . (29.1.16)

�

BT

�

T

= B and (AB)T = BTAT. If the shapes of the matrices A,B and C are such that it makes sense to
calculate the product ABC, then

(ABC)T = CTBTAT (29.1.17)
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a Figure 29.1: Resolving a vector a into components along the orthogonal
directions e and e⇤. The projection of a onto these two directions are
lengths ↵ and � along the directions e and e⇤.

29.1.2 The scalar product as a projection

Suppose that we wish to resolve the vector a into its components along the orthogonal directions specified
by the unit vectors e and e⇤, see fig(29.1). That is |e| = |e|⇤ = 1 and e · e⇤ = 0. We are required to find the
scalar values ↵ and � such that

a = ↵e+ �e⇤ (29.1.5)

From this we obtain

a · e = ↵e · e+ �e⇤ · e, a · e⇤ = ↵e · e⇤ + �e⇤ · e⇤ (29.1.6)

From the orthogonality and unit lengths of the vectors e and e⇤, this becomes simply

a · e = ↵, a · e⇤ = � (29.1.7)

This means that we can write the vector a in terms of the orthonormal components e and e⇤ as

a = (a · e) e+ (a · e⇤) e⇤ (29.1.8)

The scalar product between a and e projects the vector a onto the (unit) direction e. The projection of a
vector a onto a direction specified by general f is a·f

|f |2 f .

29.1.3 Lines in space

A line in 2 (or more) dimensions can be specified as follows. The vector of any point along the line is given,
for some s, by the equation

p = a+ su, s 2 R. (29.1.9)

where u is parallel to the line, and the line passes through the point a, see fig(29.2). An alternative
specification can be given by realising that all vectors along the line are orthogonal to the normal of the
line, n (u and n are orthonormal). That is

(p� a) · n = 0 , p · n = a · n (29.1.10)

If the vector n is of unit length, the right hand side of the above represents the shortest distance from the
origin to the line, drawn by the dashed line in fig(29.2) (since this is the projection of a onto the normal
direction).

29.1.4 Planes and hyperplanes

To define a two-dimensional plane (in arbitrary dimensional space) one may specify two vectors u and v that
lie in the plane (they need not be mutually orthogonal), and a position vector a in the plane, see fig(29.3).
Any vector p in the plane can then be written as

p = a+ su+ tv, (s, t) 2 R. (29.1.11)

a p

n u Figure 29.2: A line can be specified by some position vector on
the line, a, and a unit vector along the direction of the line, u.
In 2 dimensions, there is a unique direction, n, perpendicular to
the line. In three dimensions, the vectors perpendicular to the
direction of the line lie in a plane, whose normal vector is in the
direction of the line, u.
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A plane can be specified as the set of all points given by: 

Barber, Section 29.1.1-4 

Vector from origin to a point in the plane 
Two non-parallel directions in the plane 

Alternatively, it can be specified as: 
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Figure 29.3: A plane can be specified by a point in the
plane, a and two, non-parallel directions in the plane,
u and v. The normal to the plane is unique, and in
the same direction as the directed line from the origin
to the nearest point on the plane.
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vector can be considered as an n ⇥ 1 matrix. The i, j element of matrix A can be written Aij or more
conventionally aij . Where more clarity is required, one may write [A]ij .
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Note that in general BA 6= AB. When BA = AB we say that they A and B commute. The matrix I is
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Normal vector 
(we will call this w) 

Only need to specify this dot product, 
a scalar (we will call this the offset) 



Normal to a plane 

w
.x

 +
 b

 =
 0

 
-- projection of xj onto 
    the plane 

-- unit vector parallel to w 

    is the length of the vector, i.e. 

w: normal vector for the plane 



Scale invariance 

w
.x

 +
 b

 =
 0

 

Any other ways of writing 
the same dividing line? 
•  w.x + b = 0 
•  2w.x + 2b = 0 
•  1000w.x + 1000b = 0 
•  …. 



w
.x

 +
 b

 =
 +

1 

w
.x

 +
 b

 =
 -

1 

w
.x

 +
 b

 =
 0

 
for yt = +1, 

and for yt = -1, 

During learning, we set the scale by 
asking that, for all t, 

Scale invariance 

That is, we want to satisfy all of the 
linear constraints 



w
.x

 +
 b

 =
 +
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w
.x

 +
 b
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w
.x

 +
 b

 =
 0

 

x1 x2 

Final result: can maximize margin by minimizing ||w||2!!! 

γ 

What is    as a function of w? 

- 

We also know that: 

So, 



Support vector machines (SVMs) 

•  Example of a convex optimization problem 

–  A quadratic program 

–  Polynomial-time algorithms to solve! 

•  Hyperplane defined by support vectors 

–  Could use them as a lower-dimension 
basis to write down line, although we 
haven’t seen how yet 

•  More on these later 
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margin 2γ	



Support Vectors: 
•  data points on the 

canonical lines 

Non-support Vectors: 
•  everything else 
•  moving them will 

not change w 



What if the data is not linearly separable? 

Add More Features!!! 

What about overfitting? 

�(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅
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•  First Idea: Jointly minimize w.w and 
number of training mistakes 
–  How to tradeoff two criteria? 

–  Pick C using validation data 

•  Tradeoff #(mistakes) and w.w 
–  0/1 loss 

–  Not QP anymore 

–  Also doesn’t distinguish near misses 
and really bad mistakes 

–  NP hard to find optimal solution!!! 

+ C #(mistakes) 

What if the data is not linearly separable? 



Allowing for slack: “Soft margin SVM” 

For each data point: 

• If margin ≥ 1, don’t care 

• If margin < 1, pay linear penalty 

w
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 +
 b

 =
 +

1 

w
.x

 +
 b

 =
 -

1 

w
.x

 +
 b

 =
 0

 

ξ 

ξ 

ξ 

ξ 

+ C Σj ξj 
- ξj ξj≥0 

Slack penalty C > 0: 
• C=∞  have to separate the data! 
• C=0   ignores the data entirely! 

• Select using validation data 

“slack variables” 



Allowing for slack: “Soft margin SVM” 
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ξ 

ξ 

ξ 

ξ 

+ C Σj ξj 
- ξj ξj≥0 

“slack variables” 

What is the (optimal) value of ξj as a function 
of w and b? 

If  then ξj =  0 

If  then ξj =  


