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Dual SVM derivation (1) — the linearly
separable case

Original optimization problem:

minimizey, %W.W

(W°Xj T b) yj > 1, Vj
Rewrite One Lagrange multiplier
constraints per example

Lagrangian:

L(w,a) = %W.W — > [(W.Xj + b) Y — 1}
Oéj Z O, Vj

Our goal now is to solve: min max L(w, &)
w,b a>0



Dual SVM derivation (2) — the linearly
separable case

(Primal) G Max ‘HwHQ ZO‘J (@ - %5 +b)y; — 1]

Swap min and max

(Dual) ~ MMax min L) Z% W - T+ b)y; — 1]

Slater’s condition from convex optimization guarantees that
these two optimization problems are equivalent!




Dual SVM derivation (3) — the linearly

separable case

. ]- 112 — —
(Dual) ~ max min 5 |1l] —Z%‘ (@ - @5 +b)y; — 1]
J

Can solve for optimal w, b as function of «:
oL
B —w — Z QY5 T4 — W — Z aY5X4
J J
=—> oy 2 D ay =0
J J
Substituting these values back in (and simplifying), we obtain:

(Dual) 450 52 0n Z% Z ‘?Jiyjaioéjl(?z' 53})

Oéjyj_o 1,7 Y \ v\

Sums over all training examples  scalars  dot product




Dual SVM derivation (3) — the linearly

separable case

. ]- 112 — —
(Dual) ~ max min 5 |1l] —Z%‘ (@ - @5 +b)y; — 1]
J

Can solve for optimal w, b as function of «:

oL
B —w — Z QY5 T4 — W — Z aY5X4
/ J

oL
%:—Zajyj 7D oy =0
J J
Substituting these values back in (and simplifying), we obtain:

1 — —
(Dual)  55¢ an?c}x(jyjzo zj: A5 ;yiyjaiozj (@ - @)

So, in dual formulation we will solve for a directly!
« wand b are computed from « (if needed)



Dual SVM derivation (3) — the linearly
separable case

Lagrangian:
L(w,a) = %W.W — > [(W.Xj + b) Y — 1}
Oéj Z O, \V/j

;> 0 for some j implies constraint
is tight. We use this to obtain b: W = Z QY X,
yj(w'xj—I_b)ZI (1) b:yk—W.Xk
N for any k where a;. > 0
yiy; (0 - T +b) =y; (2) k

(W-Z; +b)=y; ()



Classification rule using dual solution

Yy <— sign (0 -

l Using dual solution

) s | Yotz 9

N

W = Z oYX
1
b=y — W.Xp
for any k where C > a5, > 0

dot product of feature vectors of
new example with support vectors




Dual for the non-separable case

Primal: Solve for w,b, o :
minimizey, iw.w+CY;¢; W= 04yiX;
. . _ . ; )
(W.X] b) yj > 1 =&, Vj | b=y, — W.x,
for any kK where C' > a;, > 0
Dual: maximizeq > ; o; — %Zi,j GO Y Y XX
D QY =
C > 87 > O

What changed?

* Added upper bound of C on ]

 Intuitive explanation:
* Without slack, a; = < when constraints are violated (points
misclassified)
« Upper bound of C limits the «,, so misclassifications are allowed



Support vectors

« Complementary slackness conditions:
aj ly; (0" - T +0) = 14§] =0 = aj =0 V y;(0" - 75 +b) =1 -

:>Oé;k:() V yj(lﬁ*fj—Fb)Sl

« Support vectors: points x such that y; (W™ - &, +b) <1
(mcludes all j such that o} > 0, but also additional points
where a; =0 A y;(uw” - T; +b) <1)

* Note: the SVM dual solution may not be unique!



Dual SVM interpretation: Sparsity

; W =) oYX,
+ J
+ &+ Final solution tends to

be sparse
* & ;=0 for most ]

«don’t need to store these
points to compute w or make
predictions

Non-support Vectors:

a =0

j .
-moving them will not | | SuUpport Vectors:
change w + 20




SVM with kernels

maximizea Y;q; — 5 Y s oYy K (i, %)
K(x;,x5) = P(x;) - P(x5)

> iy =0
CZO@,;>O

* Never compute features explicitly!!!
— Compute dot products in closed form Predict with:

y < sign [Z a;yi K (x;,x) + b

(3

¢ O(n?) time in size of dataset to
compute objective
— much work on speeding up




Quadratic kernel

Linear separator in the feature ¢-space

[Tommi Jaakkola]



Quadratic kernel

Fﬂ
e
M
3

Feature mapping given by:

B(x) = 112, 0™ 5®2 o) aee® \aea®,

[Cynthia Rudin]



Common kernels

Polynomials of degree exactly d
K(u,v) = (u-v)?

Polynomials of degree up to d
Ku,v)=(u-v+ 1)

Gaussian kernels

2 7112 Euclidean distance
U (v d
K(u,7) = exp (— | 5 I2 , squared
)

And many others: very active area of research!
(e.g., structured kernels that use dynamic programming
to evaluate, string kernels, ...)




Gaussian kernel

Level sets, i.e. w.x=r for some r

Support vectors

[Cynthia Rudin] [mblondel.org]



Kernel algebra

kernel composition feature composition
a) k(x,v) = ka(x,v) + kb (X, V) P(x) = (¢,(x), Py(x)),
b) k(x,v) = fka(x,v), f >0 P(x) =V fdu(x)
) k(x,V) = ky(x.v)Fy(x, V) P (%) = Pai (%) Pp;(X)
d) k(x,v) = xI' Av, A positive semi-definite ¢ (x) = LTx, where A = LL".
e) k(x,v) = f(x)f(v)ka(x,V) ¢(x) = f(x)Pa(x)

Q: How would you prove that the “Gaussian kernel” is a valid kernel?
A: Expand the Euclidean norm as follows:

- o2 =112 =112 o o
u— v U U Uu-v
exp< I~ 2||2> - (_\|20H22>exp (—‘2(,”22)%10( 02)
()
To see that this is a kernel, use the

Th | f b Taylor series expansion of the
en, apply (e) rom above exponential, together with repeated

application of (a), (b), and (c):

The feature mapping is X
infinite dimensional! = ;::o nl

[Justin Domke]



Overfitting”?

« Huge feature space with kernels: should we worry about
overfitting?
— SVM objective seeks a solution with large margin

* Theory says that large margin leads to good generalization
(we will see this in a couple of lectures)

— But everything overfits sometimes!!!
— Can control by:

« Setting C

« Choosing a better Kernel

« Varying parameters of the Kernel (width of Gaussian, etc.)



