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Machine Learning and Computational Statistics, Fall 2014

Problem Set 2: Support vector machines
Due: Friday, February 14, 2014 at 5pm (as a PDF document – scanning hand writ-
ten solutions is acceptable – sent to akshaykumar@nyu.edu)

Important: See problem set policy on the course web site.

1. (5 points) Consider a (hard margin) support vector machine and the following training
data from two classes:

+1 : (2, 2) (4, 4) (4, 0)

−1 : (0, 0) (2, 0) (0, 2)

(a) Plot these six training points, and construct by inspection the weight vector for the
optimal hyperplane. In your solution, specify the hyperplane in terms of ~w and b
such that w1x1 +w2x2 + b = 0. Calculate what the margin is (i.e., 2γ, where γ is the
distance from the hyperplane to its closest data point), showing all of your work.

(b) What are the support vectors? Explain why.

2. (5 points) Show that, irrespective of the dimensionality of the data space, a data set
consisting of just two data points (call them ~x1 and ~x2), one from each class, is sufficient
to determine the maximum-margin hyperplane. Fully explain your answer, including giving
an explicit formula for the solution to the hard margin SVM (i.e., ~w) as a function of ~x1
and ~x2.

3. (5 points) The primal SVM always has a unique solution because of the strict convexity
of the optimization objective. By contrast, the dual SVM solution may not be unique.
This question will explore the dual hard-margin SVM optimization problem to explain the
non-uniqueness of the solution.

The setting we consider is the following. There are three data points in the training data:
{(x1,+1), (x2,−1), (x2− 1)}, i.e. one data point of class +1, and two identical data points
of class -1. We assume that x1 6= x2. For this question you should use the Gaussian kernel,

K(xi,xj) = e
−‖xi−xj‖

2

2σ2 . This will simplify the dual objective, although any other valid
kernel would also show the non-uniqueness of the dual solution.

(a) Write down the dual optimization problem for the setting considered. It will have
three dual variables α1, α2, α3 for each of the three data points. Do not forget the
constraints!

(b) Simplify the dual objective so that it is a function of only one of the three dual
variables. Solve the (now 1-dimensional) optimization problem, and then find the
optimal α∗1, α

∗
2, α
∗
3 associated with the three data points. Use this to explain why the

dual solution is non-unique.

(c) Recall that the optimal primal solution can be obtained from the optimal dual solution
using w∗ =

∑
j α
∗
jyjxj . Using this, show that the non-unique dual solution still

describes a unique weight vector (primal solution).
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4. (10 points) Kernels

(a) For any two documents x and z, define k(x, z) to equal the number of unique words
that occur in both x and z (i.e., the size of the intersection of the sets of words in the
two documents). Is this function a kernel? Justify your answer. (Hint: k(x, z) is a
kernel if there exists φ(x) such that k(x, z) = φ(x)Tφ(z)).

(b) Assuming that ~x = [x1, x2], ~z = [z1, z2] (i.e., both vectors are two-dimensional) and
β > 0, show that the following is a kernel:

kβ(~x, ~z) = (1 + β~x · ~z)2 − 1

Do so by demonstrating a feature mapping Φ(~x) such that kβ(~x, ~z) = Φ(~x) · Φ(~z).

(c) One way to construct kernels is to build them from simpler ones. Assuming k1(x, z)
and k2(x, z) are kernels, then one can show that so are these:

i. (scaling) f(x)f(z)k1(x, z) for any function f(x) ∈ R,

ii. (sum) k(x, z) = k1(x, z) + k2(x, z),

iii. (product) k(x, z) = k1(x, z)k2(x, z).

Using the above rules and the fact that k(x, z) = xT z is a kernel, show that the
following is also a kernel: (

1 +

(
x

||x||2

)T (
z

||z||2

))3

.

5. (5 points) The multi-class SVM generalizes the binary SVM to multi-class classification.
This involves introducing a weight vector ~w(k) and b(k) for each class k = 1, . . . ,K (where K
is the number of classes). Learning solves the following optimization problem, where there
is still only one slack variable ξj for each data point, but now there are K − 1 constraints
per data point:

min
{~w(k),b(k)}

K∑
k=1

||~w(k)||22 + C
∑
j

ξj

subject to

~w(yj) · ~xj + b(yj) ≥ ~w(k) · ~xj + b(k) + 1− ξj ∀j and k 6= yj

ξj ≥ 0 ∀j.

Prediction for a new data point ~x is performed using the rule

ŷ ← arg max
k

~w(k) · ~x+ b(k).

This problem compares the binary prediction rule sign(~w·~x+b) to the multi-class prediction
rule in the case that K = 2, and shows how to reduce between the two of them.

(a) Demonstrate ~w and b as a function of ~w(1), b(1), ~w(2) and b(2) such that the predictions
made for all data points ~x using the new binary prediction rule are the same as what
would have been made using the multi-class prediction rule with ~w(1), b(1), ~w(2).

(b) Next you should show the converse. Given ~w and b, demonstrate ~w(1), b(1), ~w(2) and
b(2) (as a function of ~w and b) such that the predictions made for all data points
~x using the multi-class prediction rule are the same as what would have been made
using the binary prediction rule with ~w and b.

As always, you must show all of your work to obtain full credit.


