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Machine Learning and Computational Statistics, Spring 2014

Problem Set 5: PCA and Clustering
Due: Tuesday, April 15 at 3pm (sent to jj1192@nyu.edu)

Important: See problem set policy on the course web site. You must show all of your work and be rigorous
in your writeups to obtain full credit. Your answers to the below questions, including plots and all code that you
write for this assignment, should be e-mailed as a PDF document to Mick Jermsurawong.

Food Clustering – US Department of Agriculture Nutrient Database

In this problem set we will explore some properties of Principal Components Analysis (PCA). In addition, we
will explore unsupervised learning with K-means and Hierarchical clustering. You may use the programming
language of your choice, but we strongly encourage you to use Matlab/Octave or Python. For these languages,
we provide a function to evaluate the quality of the learned clusters and a code sample for plotting dendograms.
For Python users, please refer to ps5SkeletonCode.py. For Matlab users, please refer to ps5SkeletonCode.m

with randIndex.m.

Dataset:

Looking at the USDA nutrient database, one would find various types of foods with their corresponding
nutritional contents: http://ndb.nal.usda.gov/ndb/search/list. In this problem, we will experiment with 4
food groups: Cereal-Grain-Pasta, Finfish-Shellfish, Vegetables, Fats-Oils.

The data contains detailed categorizations of each food item. For example, there are 9 categories of Kale.
They range from raw, frozen and unprepared, cooked and boiled, cooked and drained without salt,
etc. In addition, common knowledge suggests that major food groups can be further categorized. Vegetables
can be leaves/stems, roots, or buds. Based on their nutritional contents, one might expect to see these items
clustered in hierarchies, from the major food groups, sub-groups, and finally to variants of the same food items.

The following data files are provided with the assignment and can be downloaded from the course website:

1. dataDescriptions.txt – gives the names of all the attributes (nutrients).

2. dataCereal-grains-pasta.txt, dataFinfish-shellfish.txt, dataVegetables.txt, dataFats-oils.txt

– the data files, one for each food group.

Please note that the attributes in the data files are delimited by the caret (^) character.

1. Numerical values vary widely across different type of nutrients. However, small numerical values in some
micro-nutrients such as minerals and vitamins may characterize the food items as well as larger numerical
values in macro-nutrients like protein and carbohydrates. Therefore it becomes important to normalize
the nutrient values. For this problem, transform the features to be in the range [0, 1]. E.g., for the jth

dimension, the value of the ith data point will become:

Normalized(Xij) =
Xij −min(X·j)

max(X·j)−min(X·j)

Where min and max for X·j are calculated over the jth attribute/dimension on the complete dataset.

2. Let’s begin PCA analysis by first subtracting the mean from the food items to get the centralized data
matrix X, which is of dimension m = 1496 (number of food items) by p = 150 (number of nutrients).

Now compute the singular value decomposition (SVD) of the centralized food data such that X = USV T .
The columns of V are the principal components that define the new basis. Letting W = US, we notice
that W = USV TV = XV , where we used the fact that V TV = I since V is an orthonormal matrix. Thus,
each row of W consists of the dimensionality-reduced data, i.e. the coefficients expressing the data using
the principal component coordinate system.

http://ndb.nal.usda.gov/ndb/search/list
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3. Visualize the data by reconstructing using only the first 2 principal components. Relating this to the lecture
slide p.9, the entry Wi,j corresponds to zij , and the jth column of V corresponds to uj . Use different colors
to plot the data for each food group, and be sure to include a legend in your plot. The projected data
now seem to be enclosed in a pair of perpendicular lines. Particularly, fat and oil food items form one
straight line, and fish and vegetable items almost form the other. Suppose these perpendicular lines are
in the direction of the first two principal components. Examine the first and second principal components
to find their five highest absolute weights and their corresponding nutrients. How do the findings help to
explain the observation on the perpendicular formation?

4. Apply K-means clustering on the original data, with size of cluster k = 4. Visualize the result on the
reduced dimensions (2-D). Use a different color for each cluster.

5. To quantify the performance of this clustering with respect to known class labels (in this case, the original
food groups), a simple metric, Rand Index is used. A function randIndex in Python and randIndex.m

in Matlab are provided in the skeleton code. It calculates the similarity value between two class label
assignments, the ground truth labels and the predicted labels.

If C is a ground truth class assignment and K the clustering class assignment, let us define a and b as:

• a, the number of pairs of elements that are in the same class in C and in the same class in K

• b, the number of pairs of elements that are in different classes in C and in different classes in K

The raw (unadjusted) Rand index is then given by:

RI =
a+ b(
nsamples

2

) ,
where

(
nsamples

2

)
is the total number of possible pairs in the dataset (without ordering). One of the important

properties of this metric is that it is invariant to re-labeling of the clusters.

Let’s look at an example using 4 data points. The ground truth labeling C is a row vector < 1, 2, 2, 3 >,
where each element Ci represents the actual class label that data point xi belongs to. Suppose that our
clustering algorithm returns K =< 1, 1, 1, 3 >, where Ki is the cluster assigned to data point xi. We use
the notation (Ci, Cj) and (Ki,Kj) to refer to a pair of data points in C and K, respectively. For example,
when i = 0 and j = 1, we have (C0, C1) = (1, 2) and (K0,K1) = (1, 1). In this case, C and K disagree on
the class assignment for data point x0 and x1. The data points belong to different classes according to C,
but they belong to the same class according to K. By contrast, they both agree that data points x1 and
x2 belong to the same class. The total number of such instances is a. Similarly, they both agree that data
points x2 and x3 belong to different classes. The total number of such instances is b. The ratio between
the sum of these two situations, and the total possible ways of pairing is the RI we will be using.

Using the ground truth labels from the 4 food groups, compute the Rand Index for:

(a) A random permutation of ground truth labels. This is used to provide a baseline to compare the other
numbers we will obtain from this measurement.

(b) Labels obtained using K-mean clustering in the previous question.

6. The K-means algorithm aims to choose centroids C that minimizes the within cluster sum of squares
objective function on a dataset X with n samples:

J(X,C) =

n∑
i=0

min
µi∈C

(||xi − µi||2)

Given enough iterations, K-means will always converge. However it may end up a local minimum of
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J(X,C), which depends on the initialization of the centroids (cluster means). As a result, this computation
is typically performed several times, with different initialization of the centroids. The clustering which
achieves the minimum value of the objective function is returned as the final result.

Both Python’s sklearn and Matlab’s implementation of K-Means provide various schemes of initializing
the centroids. In both implementations, one can specify the number of times to repeat the K-Means
computation to pick the minimum from. In sklearn this is specified by parameter init t, and in Matlab

the corresponding parameter is ’replicates’.

Set this value to 1, so that the respective K-Means execute exactly 1 computation. Also, set the centroid
initialization schemes to be uniformly ’random’. With these settings:

(a) Run K-Means 20 times. For each of these, record the value of the objective function J(X,C). For this
particular dataset, most of these 20 runs should return the same value for the objective function, but
there will be a few with much higher values.

Note: Both the Matlab and sklearn implementations return the value of the objective function: see
inertia in sklearn, or sumd in Matlab. You can alternatively also compute this value using the
returned centroids and the data.

(b) Report the distinct values of the objective functions that you observed, highlighting the minimum. In
some cases, you may need to run this a few more times to get distinct values.

(c) For each of these distinct clustering solutions, report the corresponding Rand Index value.

(d) Plot/visualize the clusters in 2D, as done in previous sections – do this for the 2 clusterings corre-
sponding to the minimum and maximum values of the objective function.

7. Next, we want to visualize the possible structures of food using hierarchical clustering and dendrograms.
Randomly select 30 food items from each of the 4 food groups. Create a dendrogram and review the labels
of the food items from the dendrograms. Do the food items cluster into 4 groups as expected? Identify any
distinct clusters and the corresponding food items.

To create a dendogram, Matlab’s dendogram function takes a hierarchical cluster tree as input. We can
generate our agglomerative hierarchical cluster tree using the linkage function with the ’complete’ metric.
Similarly, SciPy has a dendogram function that takes as input the linkage matrix of a hierarchical clustering.
We can also generate this using the linkage function and specifying that it use the ’complete’ metric.
We use default Euclidean distance for both. Please refer to the sample code for dendogram plotting.

8. To obtain actual clusters from hierarchical clustering, one way is to cut the dendogram along the Y-axis
using some threshold (referring back to the lecture, this corresponds to a horizontal cut). Note that the
height of each edge in the dendogram describes the distance between the children in a node. From the code
sample with the toy data, you can verify that the distance between two leaves is the height at which they
are joined. Matlab and Scipy have functions cluster and fcluster, respectively, which take as input the
linkage (dendogram) and the ’distance’ threshold on this Y-axis and uses it to cut the tree.

For SciPy/Matlab implementation, the cut threshold of 3.8 will result in 4 clusters. Visualize the result
on the dimensionality reduced (2D) space, and evaluate its performance using the Rand Index. You will
find that agglomerative clustering using the complete metric performs much worse than K-means clustering
when forced to return 4 clusters. Next, vary the threshold (decreasing its value will result in more clusters,
which in this case will help obtain a higher RI) and report the best RI that you find (also report the
corresponding threshold and the number of clusters).

9. We now want to examine sub-clusters within a food group. Let’s take the Cereal-Grain-Pasta food group.
Apply K-means using number of clusters k = 5, 10, 25, 50, 75. Report the largest cluster size for each k
and display 10 randomly sampled food items from each cluster. If the largest cluster size is less than 10,
display all the food items in that cluster. As k increases, comment on the size of the largest cluster and
the uniformity of food items in it.
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10. Suppose that we are performing clustering for the purpose of constructing features to use later within
supervised learning. We want additional features describing membership values, i.e. of whether a data
point belongs to each of the emerged clusters. Such an approach is one way to getting non-linear classifiers.
For example, suppose we are trying to predict whether a 4-year old child will like a particular food item,
e.g. a potato. If we knew the food category (e.g. vegetable, fats-oils), we could describe this potato further
by adding 4 more attributes, for whether it belongs to each of the 4 food categories. This could be really
helpful as the learning task may now be linearly separable with respect to the new feature vector. When
the food categories are not known, performing clustering and using cluster membership for the additional
attributes serves a similar role.

Why might using a 0/1 assignment resulting from K-means be problematic? Could it be that a certain
type of potato is more nutritionally similar to some pasta than to roots like carrots? This will motivate
probabilistic approaches to clustering, such as Gaussian mixture models.

11. Let’s now try to get a better understanding of PCA that we used for visualization.

Recall that the principal component can also be found by decomposing the sample covariance matrix, that

is, Λ = 1
mX

TX = 1
mV SU

TUSV T = V S2

m V
T . The relation between the singular values σi given along the

diagonal of S (found using SVD on X) and the eigenvalues λi (of the sample covariance matrix Λ) is thus
given by σ2

i /m = λi.

The total variance in a data set is defined as the sum of the variances of the individual components.
Assuming that the data has aleady had its mean subtracted, we have that the total variance of the data in
the original basis is given by

TotalVar =

p∑
j=1

Var(X·j) =

p∑
j=1

1

m

m∑
i=1

X2
ij =

1

m

∑
i,j

X2
ij =

∑
j

λj ,

where in the last step we used the fact that1∑
i,j

X2
ij = trace(XTX) = trace(V S2V T ) = trace(V TV S2) = trace(S2) = m

∑
j

λj .

We next notice that the variance of the projected data given by the k’th principal component vk (i.e. the
k’th column of V ) is given by the corresponding eigenvalue λk:

1

m
(Xvk)T (Xvk) =

1

m
vTkX

TXvk =
1

m
vTk (XTXvk) =

1

m
(vTkmλkvk) = λk.

Thus, we can calculate the proportion of variance explained by the i’th principal component as λi/
∑
j λj =

σ2
i /
∑
j σ

2
j .

Plot the proportion of variance explained by the first 10 principal components.

12. Extra credit. Reconstruct all the food items using k = 5, 10, 25, 50, 75, 100, 149 principal components.
You can reconstruct all the food items at once using the formula

Rk = WkV
T
k + mean food items,

where k is the number of principal components to use and the general notation Mk refers to the submatrix
of M obtained by using the first k columns of M . The reconstruction error using the first k principal
components is defined as

∑
i,j(X̃ij − [Rk]ij)

2, where X̃ is the original, uncentralized, data matrix.

For k = 1, 2, . . . , p compute the sum of the last p− k squares of singular values, i.e. Ek =
∑p
j=k+1 σ

2
j .

Plot (a) the reconstruction error as a function of k and (b) Ek as a function of k. Comment on the
relationship between the two plots.

1 trace(M) :=
∑

i Mii is the sum of the diagonal entries of a square matrix, which has the property that trace(AB) = trace(BA).
(XTX)jj =

∑
i(X

T )ji(X)ij =
∑

i X
2
ij , and thus trace(XTX) =

∑
j(X

TX)jj =
∑

ij X
2
ij .


