Introduction to Bayesian methods Lecture 10

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate

Bayesian learning

- Bayesian learning uses probability to model data and quantify uncertainty of predictions
 - Facilitates incorporation of prior knowledge
 - Gives optimal predictions
 - Allows for decision-theoretic reasoning

Your first consulting job

- A billionaire from the suburbs of Manhattan asks you a question:
 - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - You say: Please flip it a few times:

- You say: The probability is:
 - P(heads) = 3/5
- He says: Why???
- You say: Because...

Outline of lecture

- Review of probability
- Maximum likelihood estimation

- 2 examples of Bayesian classifiers:
- Naïve Bayes
- Logistic regression

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - − R in {true, false} (sometimes write as {+r, ¬r})
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Discrete random variables have distributions

P(T)		
Τ	Р	
warm	0.5	
cold	0.5	

D/D

1 (/ /)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

P(W)

- A discrete distribution is a TABLE of probabilities of values
- The probability of a state (lower case) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

• Must have: $\forall x P(x) \ge 0 \qquad \sum_{x} P(x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment:

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

– How many assignments if n variables with domain sizes d?

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

_	. — , , , ,	
Т	W	Р
ot	sun	0.4

P(T,W)

hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- For all but the smallest distributions, impractical to write out or estimate
 - Instead, we make additional assumptions about the distribution

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{w} P(t, w)$$

$$P(w) = \sum_{t} P(t, w)$$

P	(T)	7)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р	
sun	0.6	
rain	0.4	

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = ???$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot) $W \qquad P$ $sun \qquad 0.8$ $rain \qquad 0.2$ P(W|T = cold) $W \qquad P$ $sun \qquad 0.4$ $rain \qquad 0.6$

Joint Distribution

P(T,W)

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \longleftarrow \qquad P(x,y) = P(x|y)P(y)$$

Example:

P(W)		
W	Р	
sun	8.0	
rain	0.2	

D/TII

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D|W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14

P(D,W)

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Let's us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many practical systems (e.g. ASR, MT)
- In the running for most important ML equation!

Returning to thumbtack example...

• P(Heads) = θ , P(Tails) = $1-\theta$

- Flips are *i.i.d.*: $D = \{x_i | i = 1...n\}, P(D \mid \theta) = \prod_i P(x_i \mid \theta)$
 - Independent events
 - Identically distributed according to Bernoulli distribution
- Sequence D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Called the "likelihood" of the data under the model

Maximum Likelihood Estimation

- Data: Observed set D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails
- Hypothesis: Bernoulli distribution
- Learning: finding θ is an optimization problem
 - What's the objective function?

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• MLE: Choose θ to maximize probability of D

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Your first parameter learning algorithm

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right]
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta)
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \qquad \widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Data

$$L(\theta; \mathcal{D}) = \ln P(\mathcal{D}|\theta)$$

What if I have prior beliefs?

- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

Prior

Use Bayes' rule!

- Or equivalently: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$
- For *uniform* priors, this reduces to maximum likelihood estimation!

$$P(\theta) \propto 1$$
 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)$

Bayesian Learning for Thumbtacks

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood:
$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What should the prior be?
 - Represent expert knowledge
 - Simple posterior form
- For binary variables, commonly used prior is the Beta distribution:

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

 Since the Beta distribution is conjugate to the Bernoulli distribution, the posterior distribution has a particularly simple form:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

$$\propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}$$

$$= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_t + 1}$$

$$= Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

Using Bayesian inference for prediction

- We now have a distribution over parameters
- For any specific f, a function of interest, compute the expected value of f:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- Integral is often hard to compute
- As more data is observed, prior is more concentrated
- MAP (Maximum a posteriori approximation): use most likely parameter to approximate the expectation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$E[f(\theta)] \approx f(\widehat{\theta})$$

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Some properties of Gaussians

 Affine transformation (multiplying by scalar and adding a constant) are

Gaussian

$$- X \sim N(\mu, \sigma^2)$$

$$- Y = aX + b \rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$$

$$- X \sim N(\mu_x, \sigma^2_x)$$

$$- Y \sim N(\mu_{Y}, \sigma^{2}_{Y})$$

$$-Z = X+Y \rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$$

Easy to differentiate, as we will see soon!

Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - -e.g., exam scores
- Learn parameters
 - $-\mu$ ("mean")
 - $-\sigma$ ("variance")

x_i $i =$	Exam Score
0	85
1	95
2	100
3	12
•••	•••
99	89

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian: $P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$

• Prob. of i.i.d. samples $D=\{x_1,...,x_N\}$:

$$\mu_{MLE}, \sigma_{MLE} = \arg\max_{\mu, \sigma} P(\mathcal{D} \mid \mu, \sigma)$$

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

Your second learning algorithm: MLE for mean of a Gaussian

What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\mu} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = 0$$

$$= \sum_{i=1}^{N} x_i - N\mu = 0$$

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

MLE for variance

Again, set derivative to zero:

$$\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= -\frac{N}{\sigma} + \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{\sigma^3} = 0$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

Learning Gaussian parameters

• MLE:

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- MLE for the variance of a Gaussian is biased
 - Expected result of estimation is **not** true parameter!
 - Unbiased variance estimator:

$$\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Bayesian learning of Gaussian parameters

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution

• Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

Outline of lecture

- Review of probability
- Maximum likelihood estimation

- 2 examples of Bayesian classifiers:
- Naïve Bayes
- Logistic regression

Bayesian Classification

- Problem statement:
 - Given features $X_1, X_2, ..., X_n$
 - Predict a label Y

[Next several slides adapted from: Vibhav Gogate, Jonathan Huang, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]

Example Application

Digit Recognition

- $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)
- $Y \in \{0,1,2,3,4,5,6,7,8,9\}$

The Bayes Classifier

• If we had the joint distribution on $X_1,...,X_n$ and Y, could predict using:

$$\operatorname{arg} \max_{Y} P(Y|X_1,\ldots,X_n)$$

 (for example: what is the probability that the image represents a 5 given its pixels?)

• So ... How do we compute that?

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
 Normalization Constant

 Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 5)P(Y = 5)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

$$P(Y = 6|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 6)P(Y = 6)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

 To classify, we'll simply compute these probabilities, one per class, and predict based on which one is largest

Model Parameters

- How many parameters are required to specify the likelihood, $P(X_1,...,X_n|Y)$?
 - (Supposing that each image is 30x30 pixels)
- The problem with explicitly modeling $P(X_1,...,X_n|Y)$ is that there are usually way too many parameters:
 - We'll run out of space
 - We'll run out of time
 - And we'll need tons of training data (which is usually not available)

Naïve Bayes

- Naïve Bayes assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose **X** is composed of *n* binary features

The Naïve Bayes Classifier

Given:

- Prior P(Y)
- n conditionally independent features X given the class Y
- For each X_i, we have likelihood P(X_i|Y)

Decision rule:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

= $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$

If certain assumption holds, NB is optimal classifier! (they typically don't)

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Are the naïve Bayes assumptions realistic here?

What has to be learned?

MLE for the parameters of NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and B=b
- MLE for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

MLE for the parameters of NB

 Training amounts to, for each of the classes, averaging all of the examples together:

MAP estimation for NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and
 B=b
- MAP estimation for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + \mathbf{a}}{\sum_{x'} Count(X_i = x', Y = y) + |\mathbf{X_i}|^* \mathbf{a}}$$

Called "smoothing". Corresponds to Dirichlet prior!

What about if there is missing data?

- One of the key strengths of Bayesian approaches is that they can naturally handle missing data
- Suppose don't have value for some attribute X_i
 - applicant's credit history unknown
 - some medical test not performed on patient
 - how to compute $P(X_1=x_1 \dots X_j=? \dots X_d=x_d \mid y)$
- Easy with Naïve Bayes
 - ignore attribute in instance where its value is missing

$$P(x_1...X_j...x_d|y) = \prod_{i \neq j}^d P(x_i|y)$$

- compute likelihood based on observed attributes
- no need to "fill in" or explicitly model missing values
- based on conditional independence between attributes

Naive Bayes = Linear Classifier

Theorem: assume that $x_i \in \{0,1\}$ for all $i \in [1,N]$. Then, the Naive Bayes classifier is defined by

$$\mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b),$$

Outline of lecture

- Review of probability
- Maximum likelihood estimation

- 2 examples of Bayesian classifiers:
- Naïve Bayes
- Logistic regression

[Next several slides adapted from: Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]

Logistic Regression

- Learn P(Y|X) directly!
 - □ Assume a particular functional form
 - ★ Linear classifier? On one side we say P(Y=1|X)=1, and on the other P(Y=1|X)=0
 - ★ But, this is not differentiable (hard to learn)... doesn't allow for label noise...

Logistic Regression

Learn P(Y|X) directly!

- Assume a particular functional form
- Sigmoid applied to a linear function of the data:

Logistic function (Sigmoid):

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

$$P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

Features can be discrete or continuous!

Logistic Function in n Dimensions

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Sigmoid applied to a linear function of the data:

Features can be discrete or continuous!

Logistic Regression: decision boundary

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)} \quad P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^n w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^n w_i X_i)}$$

- Prediction: Output the Y with highest P(Y|X)
 - For binary Y, output Y=0 if

$$1 < \frac{P(Y = 0|X)}{P(Y = 1|X)}$$

$$1 < \exp(w_0 + \sum_{i=1}^{n} w_i X_i)$$

$$0 < w_0 + \sum_{i=1}^{n} w_i X_i$$

A Linear Classifier!

Likelihood vs. Conditional Likelihood

Generative (Naïve Bayes) maximizes Data likelihood

$$\ln P(\mathcal{D} \mid \mathbf{w}) = \sum_{j=1}^{N} \ln P(\mathbf{x}^{j}, y^{j} \mid \mathbf{w})$$
$$= \sum_{j=1}^{N} \ln P(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}) + \sum_{j=1}^{N} \ln P(\mathbf{x}^{j} \mid \mathbf{w})$$

Discriminative (Logistic Regr.) maximizes Conditional Data Likelihood

$$\ln P(\mathcal{D}_Y \mid \mathcal{D}_\mathbf{X}, \mathbf{w}) = \sum_{j=1}^N \ln P(y^j \mid \mathbf{x}^j, \mathbf{w})$$

Focuses only on learning P(Y|X) - all that matters for classification

Maximizing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i} w_{i} x_{i}^{j}))$$

$$= \sum_{j} v^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i} w_{i} x_{i}^{j}))$$

$$0 \text{ or } 1!$$

Bad news: no closed-form solution to maximize *I*(w)

Good news: *I*(**w**) is concave function of **w**→

No local maxima

Concave functions easy to optimize

Optimizing concave function – Gradient ascent

• Conditional likelihood for Logistic Regression is concave ightarrow

Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}\right]'$$

Update rule:
$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

Maximize Conditional Log Likelihood: Gradient ascent

$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) = \sum_{j} y^{j} (w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

$$\frac{\partial l(w)}{\partial w_{i}} = \sum_{j} \left[\frac{\partial}{\partial w_{i}} y^{j} (w_{0} + \sum_{i} w_{i} x_{i}^{j}) - \frac{\partial}{\partial w_{i}} \ln\left(1 + \exp(w_{0} + \sum_{i} w_{i} x_{i}^{j})\right) \right]$$

$$= \sum_{j} \left[y^{j} x_{i}^{j} - \frac{x_{i}^{j} \exp(w_{0} + \sum_{i} w_{i} x_{i}^{j})}{1 + \exp(w_{0} + \sum_{i} w_{i} x_{i}^{j})} \right]$$

$$= \sum_{j} x_{i}^{j} \left[y^{j} - \frac{\exp(w_{0} + \sum_{i} w_{i} x_{i}^{j})}{1 + \exp(w_{0} + \sum_{i} w_{i} x_{i}^{j})} \right]$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j x_i^j \left(y^j - P(Y^j = 1 | x^j, w) \right)$$

Gradient Ascent for LR

Gradient ascent algorithm: (learning rate $\eta > 0$)

do:

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

For i=1 to n: (iterate over features)

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

until "change" < ϵ

Loop over training examples!

Naïve Bayes vs. Logistic Regression

Learning: $h:X \mapsto Y$

X – features

Y – target classes

Generative

- Assume functional form for
 - P(X|Y) assume cond indep
 - -P(Y)
 - Est. params from train data
- Gaussian NB for cont. features
- Bayes rule to calc. P(Y|X= x):
 - $P(Y \mid X) \propto P(X \mid Y) P(Y)$
- Indirect computation
 - Can generate a sample of the data
 - Can easily handle missing data

Discriminative

- Assume functional form for
 - P(Y|X) no assumptions
 - Est params from training data
- Handles discrete & cont features

- Directly calculate P(Y|X=x)
 - Can't generate data sample

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Asymptotic comparison
 (# training examples → infinity)
 - when model correct
 - NB, Linear Discriminant Analysis (with class independent variances), and Logistic Regression produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - therefore LR expected to outperform NB

Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

- Generative vs. Discriminative classifiers
- Non-asymptotic analysis
 - convergence rate of parameter estimates,(n = # of attributes in X)
 - Size of training data to get close to infinite data solution
 - Naïve Bayes needs O(log n) samples
 - Logistic Regression needs O(n) samples
 - Naïve Bayes converges more quickly to its (perhaps less helpful) asymptotic estimates

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.