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Bayesian learning

* Bayesian learning uses probability to model
data and quantify uncertainty of predictions
— Facilitates incorporation of prior knowledge
— Gives optimal predictions
* Allows for decision-theoretic reasoning



Your first consulting job

* A billionaire from the suburbs of Manhattan asks
you a question:

— He says: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

— You say: Please flip it a few times:
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— You say: The probability is:
e P(heads) =3/5

— He says: Why???

— You say: Because...



Outline of lecture

* Review of probability
e Maximum likelihood estimation

2 examples of Bayesian classifiers:
* Nalve Bayes
* Logistic regression



Random Variables

 Arandom variable is some aspect of the world about
which we (may) have uncertainty
— R =ls it raining?
— D = How long will it take to drive to work?
— L =Where am |?

 \We denote random variables with capital letters

 Random variables have domains
— Rin {true, false} (sometimes write as {+r, —r})
— Din [0, «)
— L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

Discrete random variables have distributions

P(T) P(W)
T P W P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0

A discrete distribution is a TABLE of probabilities of values
The probability of a state (lower case) is a single number

P(W = rain) = 0.1 P(rain) = 0.1

Must have:
Vo P(x) > 0 ZP(:L') =1
X



Joint Distributions

« A joint distribution over a set of random variables: X1, Xo,...Xn
specifies a real number for each assignment:

P(X1=z1,X0 =z2,... Xn = zpn) P(T,W)

P(x1,x2,...2n) T I wlp

— How many assignments if n variables with domain sizes d?| hot | sun | 0.4

hot rain | 0.1

— Must obey:

P(gjl’ o, ... mn) >0 cold | sun | 0.2

cold | rain | 0.3
Z P(:Cl,xz,...a?n):].
(33173327"'3371)

* For all but the smallest distributions, impractical to write out or estimate
— Instead, we make additional assumptions about the distribution



Marginal Distributions

Marginal distributions are sub-tables which eliminate variables
Marginalization (summing out): Combine collapsed rows by adding

P(T)

P(T, W) T | P
T ——— [ =
hot | sun 04| P{)= ZP(taw) = :

hot | rain 0.1 w P(W)

cold sun 0.2 — W P

cold rain 0.3 P(w) = ZP(t,w) sun 0.6

rain 0.4

P(X1==1) =Y P(X1=uz1,X0=x2)
40



Conditional Probabilities

« A simple relation between joint and conditional probabilities
— In fact, this is taken as the definition of a conditional probability

P(a,b)
P(a,b
P(G‘b) — (a’7 )
P(b)
P(T, W) P(a) P(b)
T W P
hot sun 0.4 P(W =r|T =c) =777
hot rain 0.1
cold sun 0.2
cold rain 0.3




P(WIT)

Conditional Distributions

« Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

W P
sun 0.8
rain 0.2

P(W|T = cold)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Y P
sun 0.4
rain 0.6




 Example:

P(W)

W P

sun 0.8

rain 0.2

The Product Rule

« Sometimes have conditional distributions but want the joint

(m) P(z,y) = P(zly)P(y)

P(x,y)
P(y)
P(D|W)
D W P
wet sun 0.1
dry sun | 0.9
wet rain 0.7
dry rain | 0.3

=)

P(D,W)

D W P
wet sun 0.08
dry sun | 0.72
wet rain | 0.14
dry rain | 0.06




Bayes' Rule

Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)
Dividing, we get:

Paly) = 50

Why is this at all helpful?
— Let’s us build one conditional from its reverse
— Often one conditional is tricky but the other one is simple
— Foundation of many practical systems (e.g. ASR, MT)

P(x)

In the running for most important ML equation!



Returning to thumbtack example...
 P(Heads) =0, P(Tails) =1-0
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* Flipsareiid.: D={x|i=1..n}, P(D|0)=TLP(x,| 0)
— Independent events

— Identically distributed according to Bernoulli
distribution

* Sequence D of o, Heads and o Tails

P(D|0) =0%(1—0)T

Called the “likelihood” of the data under the model



Maximum Likelihood Estimation

Data: Observed set D of o, Heads and o; Tails
Hypothesis: Bernoulli distribution
Learning: finding 0 is an optimization problem
— What'’s the objective function?

P(D|60) =0%H(1 — 0)°T
MLE: Choose 0 to maximize probability of D

AN

0 = arg m@ax P(D | 0)
arg m@ax In P(D | 6)



Your first parameter learning algorithm

# = argmax InP(D]0)

0

= argmax Inf“H(1 — 9)°T

0

e Set derivative to zero, and solve!
d% InP(D|0) = d% [ING“H (1 — 0)T]
= dilé’ [apInf + arin(l —0)]
= oszie In6 + oszie In(1 —6)
Z%—la_TH =0 OvLE =

CH

ap + ar




A B
Data°\‘

(6; D) = In P(D|6)
L(0;

L(6:D)




What if | have prior beliefs?

* Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

* Rather than estimating a single 0, we obtain a
distribution over possible values of 0

In the beginning After observations

Beta(2,2) Beta(3,2)

Observe flips Pr(6 | D)
e.g.: {tails, tails}
>

Pr(6) 4

—
-
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Beta pdf

1_

Beta pdf
-




Bayesian Learning

L Prior
e Use Bayes’ rule! Data Likelihood ( 1
P(D|0)P(6
P D) = D@IOPE)
’ osterlolr /, p(p)
T \ Normalization

* Orequivalently: P(0 | D) o« P(D|0)P(H)
* For uniform priors, this reduces to

maximum likelihood estimation!

P(#) x1 P(6|D)xP(D|06)



Bayesian Learning for Thumbtacks

PO | D) x P(D|0)P(6)
Likelihood: P(D | 0) = 0%H(1 — 0)%T

 What should the prior be?
— Represent expert knowledge
— Simple posterior form

* For binary variables, commonly used prior is the
Beta distribution:

9Pn—1(1 — 9)Pr—1

PO = 56 80)

~ Beta(Bg, Br)




Beta prior distribution — P(0)

6fn—1(1 — 9)Pr—1
~ Bet ,
B(Bu, Br) et P, fr)

Beta(1,1) . e Beta(2,2) Beta(3,2) . Beta(30,20)

P(0) =

Beta pdf
o o o o

Beta pdf
Beta pdf
Beta pdf

0.4 " 0.I6 2 1 0.6
parameter value a(r,ém e v%l?.le 0.8 parameter value

Since the Beta distribution is conjugate to the Bernoulli distribution, the
posterior distribution has a particularly simple form:

PO |D) x P(D|6)P(6)
x 07 (1 — 0)*T gPr—1(1 — g)Pr—1
_ QOéH—FﬁH—l(l . Q)OéT—l—ﬁtJrl

— Bet(l(OzH—l-ﬁH, OéT—|—ﬁT)



Using Bayesian inference for prediction

* We now have a distribution over parameters

* For any specific f, a function of interest, compute the
expected value of f:

1
BIf(0)] = [ F(O)P(6| D)do

* Integral is often hard to compute
 As more data is observed, prior is more concentrated

e MAP (Maximum a posteriori approximation): use most
likely parameter to approximate the expectation

0 = arg max P(6 | D)
E[f(0)] = f(0)



What about continuous variables?

* Billionaire says: If | am
measuring a
continuous variable,
what can you do for

104+
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Py :(X)
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* You say: Let me tell e
you about Gaussians... * * 7 7 T x * 7 7
1 —@-p)?
P(QE | My U) — e 2052



Some properties of Gaussians

Affine transformation (multiplying by
scalar and adding a constant) are
Gaussian

— X~ N(w,0°%)
—Y=aX+b—=2>Y"~N(au+b,a’c?)

03

Py g:(X)

Sum of Gaussians is Gaussian 5 s SR
— XNN(Mxlgzx) Y
= Y~ N(w,0%)

— Z=X+Y =2 Z~ N(uy+u,, 04+0%)

Easy to differentiate, as we will see soon!



Learning a Gaussian

e Collect a bunch of data

—Hopefully, i.i.d. samples Lo
—e.g., exam scores oo

3 12

* Learn parameters
_ “mean,,
—#( | 99 89
—o (“variance”
1 —<:c—2u>2

P(x | p,0) = e 20



1 —@=—w?

MLE for Gaussian: Pa|pmo) = e 2

* Prob. of i.i.d. samples D={x,...,x\}:

UMLE,OMLE — afg m%XP(D | W, o)

Y

P(Dlu,0)=<

oV 2T

« Log-likelihood of data:
1 \V N —@-w?

oV 2T

InP(D | p,0) = In

N (o — )2
— _Ninovar— Y W 2“)
i=1 ¢



Your second learning algorithm:
MLE for mean of a Gaussian

e What’s MLE for mean?

d d
—|I’]P(D‘,u,0')
dp

— | —=Nlnov2m —

N (@ — p)?
;1 205 }

N
= — :—Nln 0@] — d [(% — M)Ql
N
_ Z (37202 1 _ 0
1=1

N
= Y @ -Nu=0
1=1

=1 dp 202




MLE for variance

* Again, set derivative to zero:

d . d N (xz :LL)Q

_ d Y d (a:z-—u)Q

= E{—Nlna\/ﬂ}—i;dal > ]
N

N (s —p)*

——;+; — =0
D 1 ~\ 2
OMLE — NZ(%—LO

1=1




Learning Gaussian parameters

 MLE: 1 Z
UMLE = — ) T
N, =
> 1 & 2
'3MLE — NZ(%_'&)
i—1

e MLE for the variance of a Gaussian is biased

— Expected result of estimation is not true parameter!

— Unbiased variance estimator: N

1
~2 _ ~\ 2
Tunbiased — N _ 1 Z (fcz — ,UJ)
1=1




Bayesian learning of Gaussian
parameters

* Conjugate priors
— Mean: Gaussian prior

— Variance: Wishart Distribution

* Prior for mean:

1 —u—n)?
P(u | n,A) = e 2)3?

AV 27




Outline of lecture

* Review of probability
e Maximum likelihood estimation

2 examples of Bayesian classifiers:
* Naive Bayes
* Logistic regression



Bayesian Classification

* Problem statement:
— Given features X, X,,...,X_
— Predict a label Y

[Next several slides adapted from:
Vibhav Gogate, Jonathan Huang, Luke Zettlemoyer, Carlos
Guestrin, and Dan Weld]



Example Application

* Digit Recognition

X, X, € {0,1} (Black vs. White pixels)
* Y&{0,1,2,3,4,5,6,7,8,9}




The Bayes Classifier

* If we had the joint distribution on X,,...,X, and Y, could predict
using:

argmyaxP(Y|X1,...,Xn)

— (for example: what is the probability that the image
represents a 5 given its pixels?)

* So .. How do we compute that?



The Bayes Classifier

* Use Bayes Rule!

Likelihood Prior

\ /
P(Xy,...,X,|Y)P(Y)

Normalization Constant

 Why did this help? Well, we think that we might be able to
specify how features are “generated” by the class label



The Bayes Classifier

* Let’s expand this for our digit recognition task:

P(X1,...,Xa|Y =5)P(Y =5)
P(X1,.., XY =5)P(Y =5) + P(Xy,...,X,|]Y = 6)P(Y = 6)
P(X1,...,Xu|Y = 6)P(Y = 6)
P(X1,...,X,|Y =5)P(Y =5) + P(X1,...,Xa|Y = 6)P(Y = 6)

P(Y =5|X,....,X,) =

PY =6X1,...,X,) =

* To classify, we'll simply compute these probabilities, one per
class, and predict based on which one is largest



Model Parameters

* How many parameters are required to specify the likelihood,
P(X,...,X ]Y)?
— (Supposing that each image is 30x30 pixels)

* The problem with explicitly modeling P(X,,...,X|Y) is that
there are usually way too many parameters:

— WEe’ll run out of space

— We’ll run out of time

— And we’ll need tons of training data (which is usually not
available)



Nalve Bayes

* Naive Bayes assumption:
— Features are independent given class:
P(X1, XolY) = P(X1[X2,Y)P(X2|Y)
= P(X1]Y)P(X2]Y)

— More generally:

P(X1..Xn|Y) = HP(Xi\Y)

* How many parameters now?

* Suppose X is composed of n binary features



The Naive Bayes Classifier

* Given:
— Prior P(Y) “

— n conditionally independent
features X given the class Y

— For each X, we have

likelihood P(X.|Y) g @ @

e Decision rule:
y* — h’NB(X> — Jargd manP(y)P(iE]_, R 0} | y)
= arg myaxP(y)HP(:vi\y)
i

If certain assumption holds, NB is optimal classifier!
(they typically don't)



A Digit Recognizer

* Input: pixel grids

e Qutput: a digit 0-9

2
(
=
/
9
0

Are the naive Bayes assumptions realistic here?



What has to be learned?

P(Y) P(F31 =on|lY) P(Fs55=onlY)
1.]0.1 1 |0.01 v 1 |0.05
2 |01 2 1 0.05 2 1 0.01
3 | 0.1 3 |0.05 3 | 0.90
4 101 / 4 10.30 4 10.80
5 | 0.1 5 | 0.80 5 | 0.90
6 |01 6 | 0.90 6 | 0.90
7 | 0.1 7 1 0.05 7 1025
8 |0.1 8 | 0.60 8 | 0.85
9 |01 9 | 0.50 9 | 0.60
0 |01 0 | 0.80 0 | 0.80




MLE for the parameters of NB

e Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

* MLE for discrete NB, simply:

— Prior:

Count(Y =y)
Dy Count(Y =y')

P(Y =y) =

— Observation distribution:

P(X; = 2|V = y) = Count(X; =x,Y =vy)

> Count(X; =2')Y =vy)



MLE for the parameters of NB

* Training amounts to, for each of the classes, averaging all of
the examples together:

P(XIY=5)




MAP estimation for NB

e Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

 MAP estimation for discrete NB, simply:
— Prior:

Count(Y =y)
Dy Count(Y =y')

P(Y =y) =

— Observation distribution:

Count(X; =x,Y =y) +a

P(Xz — .T’Y — y) — Zx’ CO’LLTlt(Xz — x’)Y — y) + |X_i|*a

e Called “smoothing”. Corresponds to Dirichlet prior!



What about if there is missing data?

* One of the key strengths of Bayesian approaches is that
they can naturally handle missing data
« Suppose don’t have value for some attribute X;

« applicant’s credit history unknown
« some medical test not performed on patient
« how to compute P(X,=x; ... X=? ... X;=X,| ¥)

. Easy with Naive Bayes

— d
« ignore attribute in instance P(Xl...ﬁ...xdly)-H?jp(xljy)
where its value is missing s

« compute likelihood based on observed attributes
« Nno need to “fill in” or explicitly model missing values
. based on conditional independence between attributes

[Slide from Victor Lavrenko and Nigel Goddard]



Naive Bayes = Linear Classifier

® Theorem:assume that x; € {0,1}for all i € [1, N].
Then, the Naive Bayes classifier is defined by

X — sgn(w - X + b),

[Slide from Mehyrar Mohri]



Outline of lecture

* Review of probability
e Maximum likelihood estimation

2 examples of Bayesian classifiers:
* Nalve Bayes
* Logistic regression

[Next several slides adapted from:
Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]



Logistic Regression

Learn P(Y|X) directly!

1 Assume a particular functional form

# Linear classifier? On one side we say P(Y=1|X)=1, and on
the other P(Y=1|X)=0

# But, this is not differentiable (hard to learn)... doesn’t
allow for label noise...




Logistic Regression

Logistic function (Sigmoid):

Learn P(Y|X) directly!

- Assume a particular 1
functional form L 1te

Sigmoid applied to a linear
function of the data:

-6 -4 -2 0 2 4
Z
P(Y = 1|X) = :
1+ exp(wo + LiL; wiXi) Features can be
p(y = o[x) = P00+ KLy wiXi discrete or



Logistic Function in n Dimensions

1

POV = 11X) = 1+ exp(wp + X7 1 w; X;)

Sigmoid applied to a linear function of the data:

0.8 1
0.6 A
04 -
0.2 A

Features can be discrete or continuous!



Logistic Regression: decision boundary

! exp(wo+ Y wiXi)

P(Y =1X) =

n ox) PY=0X)=
1 +exp(wo+ Y wiXi) ( X) 1 +exp(wo+ Y7 wiXi)

* Prediction: Output the Y with
highest P(Y|X)
— For binary Y, output Y=0 if

P(Y = 0|X)
P(Y = 1X)

1 <

n
1 < exp(wo+ Z wiX;)
i=1

n

0<wo+ Z w;X;
i=1

A Linear Classifier!




Likelihood vs. Conditional Likelihood

Generative (Naive Bayes) maximizes Data likelihood

N
INP(D|w) = Y InP(x?,y | w)
j=1
= > InP |x),w)+ > InPx)|w)
j=1 j=1

Discriminative (Logistic Regr.) maximizes Conditional Data Likelihood

N
In P(Dy | Dx,w) = > InP(y’ | x/,w)
=1

Focuses only on learning P(Y|X) - all that matters for classification



Maximizing Conditional Log Likelihood

I(w) =

= Zyj(’wo-l-f:
J '\ i

N
J

[P 1%, w)

0 or1!

P(Y =0|X,W) =

P(Y =1|X,W) =

1+ exp(wg + >; w; X;)
exp(wg + X w; X;)

1+ exp(wg + >; w; X;)

wiz!) — In(1 + exp(wo + > wiz)))

Bad news: no closed-form solution to maximize /(w)

Good news: I(w) is concave function of w—

No local maxima

Concave functions easy to optimize



Optimizing concave function —
Gradient ascent

* Conditional likelihood for Logistic Regression is concave —

ol(w) ol(w)

>t

Gradient: ¢ 1(w) = [ ; %

|l Learning rate, n>0
!

- Update rule:

| P Aw = nVwl(w)

WD O 4y ol(w)

8’(1)7;

awn




Maximize Conditional Log Likelihood: Gradient ascent

exp(wo + >2; w; X;)
1+ exp(wg + >; w; X;)

P(Y =1|X,W) =

(W) = Yy (wo+ > wiw)) — In(1 + exp(wo + > wiz)))
7 () ()

a—w — Z [a’UJ,y (’UJO -+ zz:wzxz) (9w,|n 1 ‘I‘eXp(wO _I_zz:wzmz)

J

i ZE‘Z exp(wo + > _, w@xf)
=D |V -
J

1+ exp(wo + >, wzxf)

1+ exp(wo + >, wzxi)

J




Gradient Ascent for LR

Gradient ascent algorithm: (learning rate r > 0)

do:
wi T — w0 Y~ P(YT =1 %, w)]
J

For i=1 to n: (iterate over features)

wi™ — w4 S al - P(YT = 1| %, w))
j

until “change” < ¢ \

Loop over training examples!



Naive Bayes vs. Logistic Regression

Learning: h:X— Y X — features
Y — target classes

Generative Discriminative
 Assume functional form for  Assume functional form for
— P(X]Y) assume cond indep — P(Y|X) no assumptions
— P(Y)
— Est. params from train data — Est params from training data

e Gaussian NB for cont. features ¢ Handles discrete & cont features
e Bayes rule to calc. P(Y|X=x):

— P(Y | X) o< P(X | Y) P(Y)
* Indirect computation e Directly calculate P(Y|X=x)

— Can generate a sample of the data — Can’t generate data sample
— Can easily handle missing data



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

e Generative vs. Discriminative classifiers

Asymptotic comparison
(# training examples =2 infinity)
— when model correct

* NB, Linear Discriminant Analysis (with class independent
variances), and Logistic Regression produce identical
classifiers

— when model incorrect

e LR is less biased — does not assume conditional
independence

—therefore LR expected to outperform NB



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

 Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
* Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
 Logistic Regression needs O(n) samples

— Naive Bayes converges more quickly to its (perhaps
less helpful) asymptotic estimates
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes,



