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Outline for today

 Modeling sequential data (e.g., time series,
speech processing) using hidden Markov
models (HMMs)

e Bayesian networks
— Independence properties
— Examples
— Learning and inference



Example application: Tracking

Observe noisy measurements of
missile location: Y,, Y,, ...

Radar

Where is the missile now? Where will it be in 10 seconds?



Probabilistic approach

e Our measurements of the missile location were
Y, Yy o0 Y,

* Let X, be the true <missile location, velocity> at
time t

* To keep this simple, suppose that everything is
discrete, i.e. X, takes the values 1, ..., k
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Probabilistic approach

* First, we specify the conditional distribution
Pr(X, | X.,):

........

[ ] [ ] @ [ ] [ ] [ ] . .

. e o o From basic physics, we can bound
. re S the distance that the missile can

. * & o have traveled

[ ] [ ] [ ] [ ]

........

* Then, we specify Pr(Y, | X,=<(10,20), 200 mph
toward the northeast>):

With probability %2, Y, = X, (ignoring the velocity). Otherwise, Y, is a
uniformly chosen grid location



1960’s

Hidden Markov models

* Assume that the joint distribution on X; X,, ..., X, and Y, Y,,
..., Y, factors as follows:

Pr(zy,...Tn, Y1, .-, Yn) = Pr(x1) Pr(y1 | 1) H Pr(xs | xi—1) Pr(y: | x¢)
t=2

* To find out where the missile is now, we do marginal

inference:
PI'(ZIZ'n | Yty .- 7yn)

* To find the most likely trajectory, we do MAP (maximum a
posteriori) inference:

argm}?XPr(ajl,...,:I:n \ y1,---7yn)



Inference

Recall, to find out where the missile is now, we do marginal
inference: Pr(z, | y1,. .-, Yn)

i

How does one compute this?

Applying rule of conditional probability, we have:

Pr(zn, y1,---,Yn)

Pr(z, | y1,. .- yn) =

Pr(y1,...,yn)
Naively, would seem to require k™! summations, Is there a
more efficient
Pr(xn7y17"'7yn) — Z Pr(xla"'axnayla"'ayn) algorithm?
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Marginal inference in HMMs

* Use dynamic programming

Pr(z,,y1, ..

LTn—1

Z Pr(z,_1,y1, ..

Tn—1

Z Pr(zp—1,y1,...

Tn—1

Z Pr(zn—1,y1,...

LTn—1

Z Pr(z,_1,y1, ..

LTn—1

Pr(A =a) :ZPI(B:b,A:a)

7yn): ZPr(xn—laxnvyla"'ayn) b

Pr(A=adB=b)=Pr(A=a)Pr(B=b|A=3q)

- 7yn—1> Pr(xnayn ’ LTn—1,Y1,--- 7yn—1)

Conditional independence in HMMs
) yn—l) PI’((En, Un | xn—l)
Pr(A=a,B=b)=Pr(A=a)Pr(B=0| A=aq)

7yn—1) PI’(ZBn ‘ xn—l) Pr(yn ‘ Ln, xn—l)
Conditional independence in HMMs

< Yn—1) Pr(an | 2n—1) Pr(ys | zn)

 For n=1, initialize Pr(zy1,y1) = Pr(z;) Pr(y; | 1)
* Total running time is O(nk) — linear time! Easy to do filtering



MAP inference in HMMs

* MAP inference in HMMs can also be solved in linear time!
argmax Pr(zy,...x, | y1,...,yn) = argmax Pr(x1, ... Tn,Y1,---,Yn)

= argmax log Pr(x1,...Zn,Y1,---,Yn)
— argmax log | Pr(e1) Pr(y: | 21)| + > log | Pr(z; | i 1) Pr(y; | zi)]
i=2

* Formulate as a shortest paths problem

Weight for edge (s, x,) is Weight for edge (x, 4, X;) is -log {Pr(xi | ;1) Pr(y; | xi)]
Path from's to t gives
the MAP assignment

Called the Viterbi algorithm



Applications of HMMs

Speech recognition

— Predict phonemes from the sounds forming words (i.e., the
actual signals)

Natural language processing

— Predict parts of speech (verb, noun, determiner, etc.) from
the words in a sentence

Computational biology
— Predict intron/exon regions from DNA
— Predict protein structure from DNA (locally)

And many many more!



HMMs as a graphical model

 We can represent a hidden Markov model with a graph:

X, X, X3 X, X Xg
>
Shading in denotes
observed variables (e.g. what
Y, Y, Y, Y, Ye Y,

is available at test time)

Pr(zi,... 20, Y1, Yn) = Pr(xy) Pr(yy | z1) H Pr(zs | x4—1) Pr(y: | x¢)
t=2

 Thereis a 1-1 mapping between the graph structure and the factorization
of the joint distribution



Naive Bayes as a graphical model

 We can represent a naive Bayes model with a graph:

Label

Shading in denotes
observed variables (e.g. what

@ @ @ @ is available at test time)

Features

n

Pr(y,z1,...,2n) = Pr(y) | [ Pr(=z: | y)

1=1

 Thereis a 1-1 mapping between the graph structure and the factorization
of the joint distribution



Bayesian networks

* A Bayesian network is specified by a directed acyclic graph
G=(V,E) with:
— One node i for each random variable X;

— One conditional probability distribution (CPD) per node, p(x; [ X)),
specifying the variable’s probability conditioned on its parents’ values

* Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1,...xn) = H p(xi | Xpa(i))

eV

* Powerful framework for designing algorithms to perform
probability computations



AQM.

2011 Turing award was for Bayesian networks
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September 4, 1936, Tel Aviv.
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B.S., Electrical Engineering (Technion,
1960); M.S., Electronics (Newark College
of Engineering, 1961); M.S., Physics
(Rutgers University, 1965); Ph.D.,
Electrical Engineering (Polytechnic
Institute of Brooklyn, 1965).
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Research Engineer, New York University
Medical School (1960-1961); Instructor,

YEAR OF THE AWARD RESEARCH SUBJECT

JUDEA PEARL

United States — 2011
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Judea Pearl created the representational and computational foundation for the processing of information under
uncertainty.

He is credited with the invention of Bayesian networks, a mathematical formalism for defining complex probability
models, as well as the principal algorithms used for inference in these models. This work not only revolutionized
the field of artificial intelligence but also became an important tool for many other branches of engineering and
the natural sciences. He later created a mathematical framework for causal inference that has had significant
impact in the social sciences.

Judea Pearl was born on September 4, 1936, in Tel Aviv, which was at that time administered under the British
Mandate for Palestine. He grew up in Bnei Brak, a Biblical town his grandfather went to reestablish in 1924. In
1956, after serving in the Israeli army and joining a Kibbutz, Judea decided to study engineering. He attended the
Technion, where he met his wife, Ruth, and received a B.S. degree in Electrical Engineering in 1960. Recalling
the Technion faculty members in a 2012 interview in the Technion Magazine, he emphasized the thrill of
discovery:



Example

* Consider the following Bayesian network:

d | i i
0.6 0.4

Example from Koller &

1 . ope .
— £ Friedman, Probabilistic
i%d° 03 |o. . .
0 71 {008 Graphical Models, 2009
0 70 0 1
i%d° 09 |0.08]| 002 Leter sV s
i%d' 105 |03 |02 i% 1095 | 0.05
i' 102 |08
10 |1
ghlo1 |09
g?l04 |06
g2 (099 | 001

 What is its joint distribution?
p(xt,.--xn) = HP(Xi|XPa(i))

eV
p(d,i,g,s,1) = p(d)p(i)p(g|i,d)p(s|i)p(!]g)



Example

* Consider the following Bayesian network:

| d
0.6 | 04
gl
i%4°1 03
i%d" | 0.05
i%4°1 09 |0.08| 002
i%d' 105 |03 |02

ZO

Example from Koller &
Friedman, Probabilistic
Graphical Models, 2009

sO | st
0.95 | 0.05
0.2 0.8

gllol

g?lo4

g2 099

0.01

 What is this model assuming?

SAT ) Grade

SAT L Grade | Intelligence



Example

Consider the following Bayesian network:

dO

dl

0.6

0.4

i%d°

i%d!

0.05

i%d°

0.9

0.08

0.02

i%d!

0.5

0.3

ZO

ll

gllol

0.9

g?lo4

0.6

g2 099

0.01

Example from Koller &
Friedman, Probabilistic
Graphical Models, 2009

Compared to a simple log-linear model to predict intelligence:
— Captures non-linearity between grade, course difficulty, and intelligence
— Modular. Training data can come from different sources!

— Built in feature selection: letter of recommendation is irrelevant given

grade



Conditional independencies

If two variables are (conditionally) independent,

structure has no edge between them

g
i%d° 03 |o. .
i%d" | 0.05 .
z:z,do 0.9 | 0.08 | 0.02 @ . 0 | 4l
i%d' 05 |03 |02 i%0.95 | 0.05
it {02 |08
1° !
ghlo1 |09
g2lo4 |os6
g%10.99 | 0.01

The network structure implies
several conditional independence
statements:

D11
GL1S|I
D1L|G
L1S|G
L1S|I

D1S



Bayesian network structure implies
conditional independencies!

@ Generalizing the above arguments, we obtain that a variable is
independent from its non-descendants given its parents

‘&
@ Common parent — fixing B decouples A and C 4> O

@ Cascade — knowing B decouples A and C
A4 _>=—=»8 >—»C >

@ V-structure — Knowing C couples A and B

e This important phenomona is called explaining away and is what
makes Bayesian networks so powerful



A simple justification (for common parent)

‘&

da > &

We'll show that p(A, C | B) = p(A | B)p(C | B) for any distribution
p(A, B, C) that factors according to this graph structure, i.e.

p(A, B, C) = p(B)p(A| B)p(C | B)

Proof.

A, B, C)
p(B)

p(A, C | B) = P — p(A| B)p(C | B)




D-separation (“direct separated”) in
Bayesian networks

Algorithm to calculate whether X | Z | Y by looking at graph
separation

Look to see if there is active path between X and Z when variables
Y are observed:

Y Y



D-separation (“direct separated”) in
Bayesian networks

@ Algorithm to calculate whether X 1. Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Z when variables
Y are observed:

NSO\
@ )

Y Y

(@) (b)



D-separation (“direct separated”) in
Bayesian networks

Algorithm to calculate whether X | Z | Y by looking at graph
separation

Look to see if there is active path between X and Z when variables
Y are observed:

X Y Z X Y Z
-

If no such path, then X and Z are d-separated with respect to Y

d-separation reduces statistical independencies (hard) to connectivity
in graphs (easy)

Important because it allows us to quickly prune the Bayesian network,
finding just the relevant variables for answering a query



D-separation example 1




X

D-separation example 2




Bayesian networks enable use of
domain knowledge

p(x1,...xp) = H p(Xi | Xpa(i))

eVv
Will my car start this morning?
Starter
Alternator
. Radio .
O
FuelPump
Distributor . Leak
. EngineQfanks .
. BatteryPgwer charge
Ss L2 Ligh ()
(0
BatteYyState
SparkPlugs GasGauygé . - .
BaReryAge anBe
. Gasank . . .

Heckerman et al., Decision-Theoretic Troubleshooting, 1995



More examples

p(x1,...xp) = H p(Xi | Xpa(i))

eV
What is the differential diagnosis?
LV failure
Hypovolemia Anaph Pulm. Embolus
e e’ T
Volume

®» ¢
HRBP HR HR SAT
EKG

Fg. 1 The ALARM network representing causal relationships is shoun with diagnostic (@), tntermediate (Q) and
measurement () nodes. CO: candiac output, CVP: central venous pressure, LVED volume: left ventricular end-
diastollc volume, LV failure: left ventricular faflure, MV: minute venttlation, PA Sat: pulmonary artery axygen satu-
ration, PAP: pulmonary artery pressure, FCWP: pulmonary caplllary wedge pressure, Pres: breathing pressure, RR:

Beinlich et al., The ALARM Monitoring System, 1989




Example: Mixture model for text
classification

Classify e-mails

— Y ={Spam,NotSpam}

Classify news articles

— Y ={what is the topic of the article?}
Classify webpages

— Y = {Student, professor, project, ...}

What about the features X?
— The text!



Features X are entire document — X for ith
word in article

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.e
From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinic
Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of
his own, but because some thugs in Toronto decided



Mixture model

Bag of words model - ignores word

order
Cl label Takes into consideration the number
Q Y dass labe of times each word is present
v |_—~ Word in it" position of the document
‘X/ X; € {“a”, “able”, “about”, “above”, ...,
! “egg”, “eight”, “either”,...}
1=1:N
N = number of words in the document

Plate notation: everything in the box is replicated N times



Mixture model for text classification

* Learning phase:
— Prior P(Y=y)
* Fraction of documents assigned to class y
— P(Xi=W|Y=y)

 Compute total count of number of times word w
appears across all documents assigned to class y

 Remember, this dist’n is shared across all positions i

* Test phase:

— For each document

e Use naive Bayes decision rule
LengthDoc

hyp(x) = arg manP(y) 1] Pxily)
i=1



Bayesian networks are generative models

Can sample from the joint distribution, top-down

Suppose Y can be “spam” or “not spam”, and e-mails are 10
words long

Let’s try generating a few emails! ? Y

;
o

Often helps to think about Bayesian networks as a generative
model when constructing the structure and thinking about
the model assumptions



Maximum likelihood estimation in
Bayesian networks

@ Suppose that we know the Bayesian network structure G

@ Let 0, be the parameter giving the value of the CPD p(x; | Xpa())

o MaX|mum likelihood estimation corresponds to solving:

M
1 M
max — log p(x™; 0
ax ) log p(x"; 0)
m=1
subject to the non-negativity and normalization constraints

@ This is equal to:

M M N
max 1 mE—l log p(x™;0) = max-i E E log p(x;" | xpa(i)'e)

m=1 j=1
M
— ZMZbgp M|xpa()9)

@ The optimization problem decomposes into an independent optimization
problem for each CPD! Has a simple closed-form solution.



Inference in Bayesian networks

 Computing marginal probabilities in tree structured Bayesian
networks is easy

— The algorithm called “belief propagation” generalizes what we showed for

hidden Markov models to arbitrary trees
Label

VT wdis

Features

e Wait... thisisn’t a tree! What can we do?




Inference in Bayesian networks

* In some cases (such as this) we can transform this into what is
called a “junction tree”, and then run belief propagation

Fg. 7

Splegelhalter's algorithm re-
arranges the ALARM network
by triangulation and clique
Jormation. The cliques are
shaded differently to make
them vtsible.

2926,6
456 21,294
14,1133,35

31,11,32,3435

31.22,35.34

21223536 | liszss] 2122
5 e




Approximate inference — more in 2 weeks

 There is also a wealth of approximate inference algorithms that can
be applied to Bayesian networks such as these

* Markov chain Monte Carlo algorithms repeatedly sample
assignments for estimating marginals

e Variational inference algorithms (which are deterministic) attempt
to fit a simpler distribution to the complex distribution, and then
computes marginals for the simpler distribution



