Learning Parameters of Bayesian networks
Lecture 12

David Sontag
New York University



Bayesian networks

* A Bayesian network is specified by a directed acyclic graph
G=(V,E) with:
— One node i for each random variable X;

— One conditional probability distribution (CPD) per node, p(x; [ X)),
specifying the variable’s probability conditioned on its parents’ values

* Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1,...xn) = H p(xi | Xpa(i))
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* Powerful framework for designing algorithms to perform
probability computations



HMMs as a graphical model

* We can represent a hidden Markov model with a graph:
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is available at test time)

Pr(zi,...2n,y1,---,Yn) = Pr(xy) Pr(yy | z1) H Pr(zs | x4—1) Pr(y: | x¢)
t=2

 Thereis a 1-1 mapping between the graph structure and the factorization
of the joint distribution



Naive Bayes as a graphical model

* We can represent a naive Bayes model with a graph:
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Pr(y,z1,...,2n) = Pr(y) [ [ Pr(z: | y)

1=1

 Thereis a 1-1 mapping between the graph structure and the factorization
of the joint distribution



Inference in Bayesian networks

 Computing marginal probabilities in tree structured Bayesian
networks is easy

— The algorithm called “belief propagation” generalizes what we showed for

hidden Markov models to arbitrary trees
Label
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e Wait... thisisn’t a tree! What can we do?
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Inference in Bayesian networks

* In some cases (such as this) we can transform this into what is
called a “junction tree”, and then run belief propagation
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Approximate inference — more next week

 There is also a wealth of approximate inference algorithms that can
be applied to Bayesian networks such as these
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* Markov chain Monte Carlo algorithms repeatedly sample
assignments for estimating marginals

e Variational inference algorithms (which are deterministic) attempt
to fit a simpler distribution to the complex distribution, and then
computes marginals for the simpler distribution



Maximum likelihood estimation in
Bayesian networks

@ Suppose that we know the Bayesian network structure G
® Let 0, be the parameter giving the value of the CPD p(x; | Xpa())

@ Maximum likelihood estimation corresponds to solving:

M
1 M
max — log p(x™: 6
ax ;) log p(x"; 0)
m=1
subject to the non-negativity and normalization constraints

@ This is equal to:

M M N
max - mz_:l log p(x™;0) = max mz_:l ; log p(Xi" | Xpa(i): 6)
Ny oM
= max) - > log p(” | xphiy: 0)
i=1 m=1

@ The optimization problem decomposes into an independent optimization
problem for each CPD! Has a simple closed-form solution.



Discriminative versus generative classifiers

* There is often significant flexibility in choosing the structure
and parameterization of a Bayesian network

* Without further constraints, these are equivalent models of
p(Y, X):

Generative Discriminative

O, O



Discriminative versus generative classifiers

@ Let's go a bit deeper to understand what are the trade-offs inherent in

each approach
@ Since X is a random vector, for Y — X to be equivalent to X — Y/,

we must have:
Generative Discriminative
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We must make the following choices:

@ In the generative model, how do we parameterize p(X; | Xpa(i), Y)?
@ In the discriminative model, how do we parameterize p(Y | X)?



Discriminative versus generative classifiers

We must make the following choices:
© In the generative model, how do we parameterize p(X; | Xpa(iy, Y)?

@ In the discriminative model, how do we parameterize p(Y | X)?

Generative Discriminative

© For the generative model, assume that X; L X_; | Y (naive Bayes)
@ For the discriminative model, assume that
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logistic regression



Discriminative versus generative classifiers

© For the generative model, assume that X; 1. X_; | Y (naive Bayes)

@ For the discriminative model, assume that

Q0+ 1 aix 1

Y p— 1 ; — n — n
p( | X, Oé) 1 i ea0+2i:1 Qi X 1 + e_QO_Zizl QjXj

@ In problem set , you show assumption 1 = assumption 2

@ Thus, every conditional distribution that can be represented using
naive Bayes can also be represented using the logistic model

@ What can we conclude from this?

With a large amount of training data, logistic regression
will perform at least as well as naive Bayes!



Logistic regression for discrete

classification

Logistic regression in more general case, where
set of possible Yis {y,,...,yr}

Define a weight vector w, for each vy, i=1,...,R-1

P(Y=y,|X)

P(Y = 1|X) x exp(wio + Zwlin')
1 biggest

P(Y = 2|X) o< exp(woo + sz@X@)
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g=1



Logistic regression for discrete
classification

* Logistic regression in more general case, where
Yisin the set {y,,...,yg}

for k<R
exp(wgo + i wi X;)
1+ 2551 exp(wjo + X g wyiX;)

P(Y = y|X) =

for k=R (normalization, so no weights for this class)

1
1+ Zfz_ll exp(w;o + X1 q w;; X;)

P(Y = yg|X) =

Features can be discrete or continuous!



Mixture Models & EM algorithm

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer,
Dan Weld, Vibhav Gogate, and Andrew Moore



The Evils of “Hard Assighments”?

* Clusters may overlap
* Some clusters may be

) qp “wider” than others

e Distances can be
deceiving!



Probabilistic Clustering

* Try a probabilistic model!

* allows overlaps, clusters of different -

Size, etc. 7?7 0.1 2.1
* Can tell a generative story for ? 05 -11
data ?? 00 3.0
— P(Y)P(X]Y)
. ?? -0.1 -2.0
* Challenge: we need to estimate
model parameters without SRR

labeled Ys



Gaussian Mixture Models

e P(Y): There are k components

e P(X]Y): Each component generates data from a multivariate

Gaussian with mean p;and covariance matrix 2

Each data point is sampled from a generative process:

1. Choose component i with probability P(y=i) [Multinomial]

2. Generate datapoint ¥~ N(m,, %))

P(X=x,1Y =i)=
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What Model Should We Use?

* Depends on X! mu
* Here, maybe Gaussian Naive Bayes?
? 01 21

— Multinomial over clusters Y

— (Independent) Gaussian for each X e
given 'Y ?? 00 3.0
2?7 -0.1 -2.0
p(Yi = yi) = O
2?2 0.2 15
(o —pi)?
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Multivariate Gaussians

1 1 T
P(X:x]): (2.7_[)m/2 ” D ”1/2 expl_a(xj _‘U) 2 1(Xj —HU )
2132‘
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> « jdentity matrix



Multivariate Gaussians

1 I
P(X=x)= _(x,
A=)~ Gypris i =P l > (%,

2 = diagonal matrix
X. are independent ala Gaussian NB



Multivariate Gaussians

1 1 T 4
P(X:x]): (2ﬂ)m/2 1> ”1/2 €Xp!——(xj _‘U) ~ (XJ - )

@

> = arbitrary (semidefinite) matrix:
- specifies rotation (change of basis)
- eigenvalues specify relative elongation
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Multivariate Gaussians

»,  Eigenvalue, A, of 2

A u?

Y2 Covariance matrix, 2, =
n degree to which x; vary
together

\L/2
A2

P~ (x-0) = (x,-0)

Q)"



Mixtures of Gaussians (1)

Old Faithful Data Set
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Mixtures of Gaussians (1)

Old Faithful Data Set
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Single Gaussian Mixture of two Gaussians



Mixtures of Gaussians (2)

Combine simple models into a complex model:

% p(z)4
p(x) = ZWkN(X|Nka Ek?

k=1
Component

Mixing coefficient

K=3



Mixtures of Gaussians (3)
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Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

0.5




Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

0.5




Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

0.5

0 0.5 |
Shown is the posterior probability that a point was generated
from ith Gaussian: Pr(Y =i | )



ML estimation in supervised setting

e Univariate Gaussian

e Mixture of Multivariate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

[ & .
Mz@f;;xn S =%E(X1‘M@L)(XJ‘MAZL)T
n =

\ /

Just sums over x generated from the k’th Gaussian



That was easy!
But what if unobserved data?

* MLE:

—argmaxg | [; P(y;x;)
— 0: all model parameters

* eg, class probs, means, and
variances

* But we don’t know y;’s!!!

* Maximize marginal likelihood: —
— argmax, [, P(x) = argmax [, 3\, P(Y;=k, x)



How do we optimize? Closed Form?

* Maximize marginal likelihood.
—argmaxg | [; P(x;) = argmax | |, 3 P(Y;=k, x;)
* Almost always a hard problem!

— Usually no closed form solution
— Even when IgP(X,Y) is convex, IgP(X) generally isn’t...

— For all but the simplest P(X), we will have to do
gradient ascent, in a big messy space with lots of
local optimum...



Learning general mixtures of Gaussian

P(x,y=k)= 1 l( ) 5 )|P(y =k
(X]’y_ )_(zn)m/Z ”Zk ”1/2eXp _2 X]_Mk k(Xj_Mk (y_ )

Marginal likelihood:

HP(XJ)

j=1

EP(Xj,y=k)

k=1

[

1

I
=UE(2n)m’2 = 12 P| 72

2

(Xj _ Mk)Tzk—l(Xj - Mk)]P(y = k)

Need to differentiate and solve for y,, 2,, and P(Y=k) for k=1..K

There will be no closed form solution, gradient is complex, lots of
local optimum

Wouldn’t it be nice if there was a better way!?!



O

Expectation
Maximization
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1977: Dempster, Laird, & Rubin



The EM Algorithm

* A clever method for maximizing marginal
likelihood:
— argmaxg [ [; P(x;) = argmaxg [ [; -, P(Y;=k, x))

— Based on coordinate descent. Easy to implement
(eg, no line search, learning rates, etc.)

e Alternate between two steps:
— Compute an expectation
— Compute a maximization
* Not magic: still optimizing a non-convex
function with lots of local optima

— The computations are just easier (often, significantly so!)



EM: Two Easy Steps
Objective: argmaxg Ig[ [; X\, P(Y;=k, x;; 8) = 3;1g 2, ., P(Y;=k, x;; 6)
Data: {x; | j=1.. n}

e E-step: Compute expectations to “fill in” missing y values
according to current parameters, 0

— For all examples j and values k for Y;, compute: P(Y;=k | x;; 6)

* M-step: Re-estimate the parameters with “weighted” MLE
estimates

— Set 6" = argmaxg Y, X, P(Y;=k | x;;6°%) log P(Y;=k, x;; 6)

Particularly useful when the E and M steps have closed form solutions



