
Support vector machines (SVMs)
Lecture 2

David Sontag

New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
and Carlos Guestrin

Geometry of linear separators
(see blackboard)

A plane can be specified as the set of all points given by:

Barber, Section 29.1.1-4

Vector from origin to a point in the plane
Two non-parallel directions in the plane

Alternatively, it can be specified as:

Normal vector
(we will call this w)

Only need to specify this dot product,
a scalar (we will call this the offset, b)

Linear Separators

  If training data is linearly separable, perceptron is
guaranteed to find some linear separator

  Which of these is optimal?

  SVMs (Vapnik, 1990’s) choose the linear separator with the
largest margin

•  Good according to intuition, theory, practice

•  SVM became famous when, using images as input, it gave
accuracy comparable to neural-network with hand-designed
features in a handwriting recognition task

Support Vector Machine (SVM)

V. Vapnik

Robust to
outliers!

1.  Use optimization to find solution (i.e. a
hyperplane) with few errors

2.  Seek large margin separator to improve
generalization

3.  Use kernel trick to make large feature
spaces computationally efficient

Support vector machines: 3 key ideas

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

Finding a perfect classifier (when one exists)
using linear programming

for yt = +1,

and for yt = -1,

For every data point (xt, yt), enforce the
constraint

Equivalently, we want to satisfy all of the
linear constraints

This linear program can be efficiently
solved using algorithms such as simplex,
interior point, or ellipsoid

Finding a perfect classifier (when one exists)
using linear programming

Example of 2-dimensional
linear programming
(feasibility) problem:

For SVMs, each data point
gives one inequality:

What happens if the data set is not linearly separable?

Weight space

•  Try to find weights that violate as few
constraints as possible?

•  Formalize this using the 0-1 loss:

•  Unfortunately, minimizing 0-1 loss is
NP-hard in the worst-case
–  Non-starter. We need another

approach.

#(mistakes)

Minimizing number of errors (0-1 loss)

min
w,b

X

j

`0,1(yj , w · xj + b)

where `0,1(y, ŷ) = 1[y 6= sign(ŷ)]

Key idea #1: Allow for slack

For each data point:

• If functional margin ≥ 1, don’t care

• If functional margin < 1, pay linear penalty

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

ξ2

ξ1

ξ3

ξ4

Σj ξj

- ξj ξj≥0

“slack variables”

We now have a linear program again,
and can efficiently find its optimum

, ξ

Key idea #1: Allow for slack

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

Σj ξj

- ξj ξj≥0

“slack variables”

, ξ

What is the optimal value ξj
* as a function

of w* and b*?

If then ξj = 0

If then ξj =

Sometimes written as

ξ2

ξ1

ξ3

ξ4

Equivalent hinge loss formulation

Σj ξj
- ξj ξj≥0

Substituting into the objective, we get:

, ξ

min

w,b

X

j

max

⇣
0, 1� (w · xj + b) yj

⌘

This is empirical risk minimization,
using the hinge loss

min
w,b

X

j

`hinge(yj , w · xj + b)

The hinge loss is defined as `hinge(y, ŷ) = max

⇣
0, 1� ŷy

⌘

Hinge loss vs. 0/1 loss

1 0

1

Hinge loss upper bounds 0/1 loss!

It is the tightest convex upper bound on the 0/1 loss

Hinge loss:
`hinge(y, ŷ) = max

⇣
0, 1� ŷy

⌘

0-1 Loss:
`0,1(y, ŷ) = 1[y 6= sign(ŷ)]

Key idea #2: seek large margin

•  Suppose again that the data is linearly separable and we are solving
a feasibility problem, with constraints

•  If the length of the weight vector ||w|| is too small, the optimization
problem is infeasible! Why?

Key idea #2: seek large margin

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

As ||w|| (and |b|)
get smaller

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

x1
x2

γ

What is (geometric margin) as a function of w?

-

We also know that:

So,

�i = Distance to i’th data point

� = min
i

�i

(assuming there is a data point
 on the w.x + b = +1 or -1 line)

Final result: can maximize by minimizing ||w||2!!!

(Hard margin) support vector machines

•  Example of a convex optimization problem

–  A quadratic program

–  Polynomial-time algorithms to solve!

•  Hyperplane defined by support vectors

–  Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet

•  More on these later

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

margin 2γ	

Support Vectors:
•  data points on the

canonical lines

Non-support Vectors:
•  everything else
•  moving them will

not change w

Allowing for slack: “Soft margin SVM”

For each data point:

• If margin ≥ 1, don’t care

• If margin < 1, pay linear penalty

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -

1

w
.x

 +
 b

 =
 0

+ C Σj ξj

- ξj ξj≥0

Slack penalty C > 0:
•  C=∞  have to separate the data!
•  C=0  ignores the data entirely!

•  Select using cross-validation

“slack variables”

ξ2

ξ1

ξ3

ξ4

Equivalent formulation using hinge loss

+ C Σj ξj
- ξj ξj≥0

Substituting into the objective, we get:

This part is empirical risk minimization,
using the hinge loss

This is called regularization;
used to prevent overfitting!

The hinge loss is defined as `hinge(y, ŷ) = max

⇣
0, 1� ŷy

⌘

min
w,b

||w||22 + C

X

j

`hinge(yj , w · xj + b)

What if the data is not linearly
separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

�(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

7

[Tommi Jaakkola]

Example

What’s Next!

•  Learn one of the most interesting and
exciting recent advancements in machine
learning
– Key idea #3: the “kernel trick”

– High dimensional feature spaces at no extra
cost

•  But first, a detour
– Constrained optimization!

Constrained optimization

x*=0

No Constraint x ≥ -1

x*=0 x*=1

x ≥ 1

How do we solve with constraints?
  Lagrange Multipliers!!!

Lagrange multipliers – Dual variables

Introduce Lagrangian (objective):

We will solve:

Add Lagrange multiplier

Add new
constraint

Why is this equivalent?
•  min is fighting max!
x<b  (x-b)<0  maxα-α(x-b) = ∞

•  min won’t let this happen!

x>b, α≥0  (x-b)>0  maxα-α(x-b) = 0, α*=0
•  min is cool with 0, and L(x, α)=x2 (original objective)

x=b  α can be anything, and L(x, α)=x2 (original objective)

Rewrite
Constraint

The min on the outside forces max to behave, so constraints will be satisfied.

Dual SVM derivation (1) – the linearly
separable case (hard margin SVM)

Original optimization problem:

Lagrangian:

Rewrite
constraints

One Lagrange multiplier
per example

Our goal now is to solve:

Dual SVM derivation (2) – the linearly
 separable case (hard margin SVM)

Swap min and max

Slater’s condition from convex optimization guarantees that
these two optimization problems are equivalent!

(Primal)

(Dual)

Dual SVM derivation (3) – the linearly
 separable case (hard margin SVM)

Can solve for optimal w, b as function of α:



⇥(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

⇤L

⇤w
= w �

⌥

j

�jyjxj

7

(Dual)



Substituting these values back in (and simplifying), we obtain:

(Dual)

Sums over all training examples dot product scalars

Dual formulation only depends on
dot-products of the features!

First, we introduce a feature mapping:

Next, replace the dot product with an equivalent kernel function:



SVM with kernels

•  Never compute features explicitly!!!
–  Compute dot products in closed form

•  O(n2) time in size of dataset to
compute objective
–  much work on speeding up

Predict with:

Common kernels
•  Polynomials of degree exactly d

•  Polynomials of degree up to d

•  Gaussian kernels

•  Sigmoid

•  And many others: very active area of research!

[Tommi Jaakkola]

Quadratic kernel

Quadratic kernel

[Cynthia Rudin]

Feature mapping given by:

