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Geometry of linear separators 
(see blackboard) 

A plane can be specified as the set of all points given by: 

Barber, Section 29.1.1-4 

Vector from origin to a point in the plane 
Two non-parallel directions in the plane 

Alternatively, it can be specified as: 

Normal vector 
(we will call this w) 

Only need to specify this dot product, 
a scalar (we will call this the offset, b) 



Linear Separators 

  If training data is linearly separable, perceptron is 
guaranteed to find some linear separator 

  Which of these is optimal?  



  SVMs (Vapnik, 1990’s) choose the linear separator with the 
largest margin 

•  Good according to intuition, theory, practice 

•  SVM became famous when, using images as input, it gave 
accuracy comparable to neural-network with hand-designed 
features in a handwriting recognition task 

Support Vector Machine (SVM) 

V. Vapnik 

Robust to 
outliers! 



1.  Use optimization to find solution (i.e. a 
hyperplane) with few errors 

2.  Seek large margin separator to improve 
generalization 

3.  Use kernel trick to make large feature 
spaces computationally efficient 

Support vector machines: 3 key ideas 
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Finding a perfect classifier (when one exists) 
using linear programming 

for yt = +1, 

and for yt = -1, 

For every data point (xt, yt), enforce the 
constraint 

Equivalently, we want to satisfy all of the 
linear constraints 

This linear program can be efficiently 
solved using algorithms such as simplex, 
interior point, or ellipsoid 



Finding a perfect classifier (when one exists) 
using linear programming 

Example of 2-dimensional 
linear programming  
(feasibility) problem: 

For SVMs, each data point 
gives one inequality: 

What happens if the data set is not linearly separable? 

Weight space 



•  Try to find weights that violate as few 
constraints as possible? 

•  Formalize this using the 0-1 loss: 

•  Unfortunately, minimizing 0-1 loss is 
NP-hard in the worst-case 
–  Non-starter. We need another 

approach. 

#(mistakes) 

Minimizing number of errors (0-1 loss) 

min
w,b

X

j

`0,1(yj , w · xj + b)

where `0,1(y, ŷ) = 1[y 6= sign(ŷ)]



Key idea #1: Allow for slack 

For each data point: 

• If functional margin ≥ 1, don’t care 

• If functional margin < 1, pay linear penalty 
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ξ2 

ξ1 

ξ3 

ξ4 

Σj ξj 

- ξj ξj≥0 

“slack variables” 

We now have a linear program again, 
and can efficiently find its optimum 

, ξ 



Key idea #1: Allow for slack 
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Σj ξj 

- ξj ξj≥0 

“slack variables” 

, ξ 

What is the optimal value ξj
* as a function 

of w* and b*? 

If  then ξj =  0 

If  then ξj =  

Sometimes written as 

ξ2 

ξ1 

ξ3 

ξ4 



Equivalent hinge loss formulation 

Σj ξj 
- ξj ξj≥0 

Substituting into the objective, we get: 

, ξ 

min

w,b

X

j

max

⇣
0, 1� (w · xj + b) yj

⌘

This is empirical risk minimization, 
using the hinge loss 

min
w,b

X

j

`hinge(yj , w · xj + b)

The hinge loss is defined as  `hinge(y, ŷ) = max

⇣
0, 1� ŷy

⌘



Hinge loss vs. 0/1 loss 

1 0 

1 

Hinge loss upper bounds 0/1 loss! 

It is the tightest convex upper bound on the 0/1 loss  

Hinge loss: 
`hinge(y, ŷ) = max

⇣
0, 1� ŷy

⌘

0-1 Loss: 
`0,1(y, ŷ) = 1[y 6= sign(ŷ)]



Key idea #2: seek large margin 



•  Suppose again that the data is linearly separable and we are solving 
a feasibility problem, with constraints 

•  If the length of the weight vector ||w|| is too small, the optimization 
problem is infeasible!       Why? 

Key idea #2: seek large margin 
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As ||w|| (and |b|) 
get smaller 
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x1 
x2 

γ

What is    (geometric margin) as a function of w? 

- 

We also know that: 

So, 

�i = Distance to i’th data point

� = min
i

�i

(assuming there is a data point 
 on the w.x + b = +1 or -1 line) 

Final result: can maximize      by minimizing ||w||2!!! 



(Hard margin) support vector machines 

•  Example of a convex optimization problem 

–  A quadratic program 

–  Polynomial-time algorithms to solve! 

•  Hyperplane defined by support vectors 

–  Could use them as a lower-dimension 
basis to write down line, although we 
haven’t seen how yet 

•  More on these later 
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Support Vectors: 
•  data points on the 

canonical lines 

Non-support Vectors: 
•  everything else 
•  moving them will 

not change w 



Allowing for slack: “Soft margin SVM” 

For each data point: 

• If margin ≥ 1, don’t care 

• If margin < 1, pay linear penalty 
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+ C Σj ξj 

- ξj ξj≥0 

Slack penalty C > 0: 
•  C=∞  have to separate the data! 
•  C=0   ignores the data entirely! 

•  Select using cross-validation 

“slack variables” 

ξ2 

ξ1 

ξ3 

ξ4 



Equivalent formulation using hinge loss 

+ C Σj ξj 
- ξj ξj≥0 

Substituting into the objective, we get: 

This part is empirical risk minimization, 
using the hinge loss 

This is called regularization; 
used to prevent overfitting! 

The hinge loss is defined as  `hinge(y, ŷ) = max

⇣
0, 1� ŷy

⌘

min
w,b

||w||22 + C

X

j

`hinge(yj , w · xj + b)



What if the data is not linearly 
separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 

�(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

7



[Tommi Jaakkola] 

Example 



What’s Next! 

•  Learn one of the most interesting and 
exciting recent advancements in machine 
learning 
– Key idea #3: the “kernel trick” 

– High dimensional feature spaces at no extra 
cost 

•  But first, a detour 
– Constrained optimization! 



Constrained optimization 

x*=0 

No Constraint x ≥ -1 

x*=0 x*=1 

x ≥ 1 

How do we solve with constraints?  
  Lagrange Multipliers!!!  



Lagrange multipliers – Dual variables 

Introduce Lagrangian (objective): 

We will solve: 

Add Lagrange multiplier 

Add new 
constraint 

Why is this equivalent? 
•  min is fighting max! 
x<b  (x-b)<0  maxα-α(x-b) = ∞ 

•  min won’t let this happen! 

x>b, α≥0  (x-b)>0  maxα-α(x-b) = 0, α*=0 
•  min is cool with 0, and L(x, α)=x2 (original objective) 

x=b  α can be anything, and L(x, α)=x2 (original objective) 

Rewrite 
Constraint 

The min on the outside forces max to behave, so constraints will be satisfied.  



Dual SVM derivation (1) – the linearly 
separable case (hard margin SVM) 

Original optimization problem: 

Lagrangian: 

Rewrite 
constraints 

One Lagrange multiplier 
per example 

Our goal now is to solve: 



Dual SVM derivation (2) –  the linearly 
 separable case (hard margin SVM) 

Swap min and max 

Slater’s condition from convex optimization guarantees that 
these two optimization problems are equivalent! 

(Primal) 

(Dual) 



Dual SVM derivation (3) –  the linearly 
 separable case (hard margin SVM) 

Can solve for optimal w, b as function of α: 

 
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(Dual) 

 

Substituting these values back in (and simplifying), we obtain: 

(Dual) 

Sums over all training examples dot product scalars 



Dual formulation only depends on 
dot-products of the features! 

First, we introduce a feature mapping:   

Next, replace the dot product with an equivalent kernel function: 

 



SVM with kernels 

•  Never compute features explicitly!!! 
–  Compute dot products in closed form 

•  O(n2) time in size of dataset to 
compute objective 
–  much work on speeding up 

Predict with: 



Common kernels 
•  Polynomials of degree exactly d 

•  Polynomials of degree up to d 

•  Gaussian kernels 

•  Sigmoid 

•  And many others: very active area of research! 



[Tommi Jaakkola] 

Quadratic kernel 



Quadratic kernel 

[Cynthia Rudin] 

Feature mapping given by: 


