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Geometry of linear separators
(see blackboard)

A plane can be specified as the set of all points given by:

p=a+su+tv, (s,t) € R.

f

Vector from origin to a point in the plane L
Two non-parallel directions in the plane

Alternatively, it can be specified as:

(p—a) n=0&p-n=a-n

Normal vector /

(we will call this w)

Only need to specify this dot product,
a scalar (we will call this the offset, b)

Barber, Section 29.1.1-4



Linear Separators

» |f training data is linearly separable, perceptron is
guaranteed to find some linear separator

= Which of these is optimal?




Support Vector Machine (SVM)

= SVMs (Vapnik, 1990’s) choose the linear separator with the
largest margin

Robust to
outliers!

V. Vapnik

« (Good according to intuition, theory, practice

« SVM became famous when, using images as input, it gave
accuracy comparable to neural-network with hand-designed

features in a handwriting recognition task



Support vector machines: 3 key ideas

1. Use optimization to find solution (i.e. a
hyperplane) with few errors

2. Seek large margin separator to improve
generalization

3. Use kernel trick to make large feature
spaces computationally efficient




Finding a perfect classifier (when one exists)
using linear programming

For every data point (x,, V,), enforce the
constraint
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andfory,=-1, w-z; +b0< —1

== Equivalently, we want to satisfy all of the
linear constraints

S — This linear program can be efficiently

solved using algorithms such as simplex,
interior point, or ellipsoid



Finding a perfect classifier (when one exists)
using linear programming

it

20

Weight space

_ _ y= -x + 200 x =150
Example of 2-dimensional

linear programming
(feasibility) problem:

y = 120
For SVMs, each data point
gives one inequality:
yr (w-xy +b) > 1
26\0\ ;

What happens if the data set is not linearly separable?



Minimizing number of errors (0-1 loss)

« Try to find weights that violate as few
constraints as possible?

minimizew,b #(mistakes)

+ - (W.Xj -+ b) y; > 1 i
':ﬂ:' - =]
+ - L ="
= _ « Formalize this using the 0-1 loss:
dh oL = Ivr‘lri’glzgo,l(yj, w - a:j + b)

J
where ¢y1(y,y) = 1y # sign(y)

« Unfortunately, minimizing 0-1 loss is
NP-hard in the worst-case

— Non-starter. We need another
approach.



Key idea #1: Allow for slack

- minimizey ;. %

- (wxjb)y; > 1-§ V5 g0
- - )

“slack variables”

We now have a linear program again,
= and can efficiently find its optimum

For each data point:
oIf functional margin =2 1, don'’t care
oIf functional margin < 1, pay linear penalty



Key idea #1: Allow for slack

- minimizey . %§

= (WX]—Fb)y]Z]_-EJJ , Vg &>0
- = )

“slack variables”

= _ What is the optimal value &~ as a function
= of w* and b*?

If (w-z;+b)y; >1,theng= 0

If (w-2;+b)y; <1,theng=1— (w-z; +b)y;

Sometimes written as ¢,

(1—(w-:€j+b)yj)+ € ¢ =max(0,1— (w-z;+0b)y;)



Equivalent hinge loss formulation

miniMizey . % §
(W.Xj -+ b) Y > 1] - ij , V9 &0

Substituting &; = max (0,1 — (w - x; +b)y;) into the objective, we get:

mln
w,b

J

max (() 1 —(w-x; +b)yj)

The hinge loss is defined as /hinge(y, ¥) = max (O, 1— g)y)

mmZﬁhmge Yi, W-Tj+ b)

This is empirical risk minimization,
using the hinge loss



Hinge loss vs. 0/1 loss

Hinge loss:
ghinge (ya f&) — Inax (07 1 — :&y)

‘ /

0 1

0-1 Loss:
50,1(% ”Q) — 1[?/ # sign(g)}

yy

Hinge loss upper bounds 0/1 loss!

mmm) |t is the tightest convex upper bound on the 0/1 loss



Key idea #2: seek large margin




Key idea #2: seek large margin

Suppose again that the data is linearly separable and we are solving
a feasibility problem, with constraints

yr (w-a +b) >1 Vit
If the length of the weight vector ||w|| is too small, the optimization
problem is infeasible! Why?
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What is 7 (geometric margin) as a function of w?

v; = Distance to ¢’th data point w-r1+b=1

7 = min-y;
(A

w'x2+b:O

O w'(x1_332):1
?\\)g

We also know that:

w
TR T )

1= (5 ) = - w=lul
wl] /) [lwl

So, ¥V = L (assuming there is a data point

||’LUH onthe w.x + b = +1or -1 line)

Final result: can maximize 7Y by minimizing ||w||,!!!



(Hard margin) support vector machines
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minimizey, , WwW.w

o II’
: : (w.xj +b) yj > 1, Vj
2 s
.{'lz ==
« Example of a convex optimization problem
.:I'}- ==
T & — A quadratic program
= — Polynomial-time algorithms to solve!
aly « Hyperplane defined by support vectors
|:||]:|
— Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet
argin 2y « More on these later
Non-support Vectors:
« everything else Support Vgctors:
 moving them will * data points on the
not change w canonical lines




Allowing for slack: “Soft margin SVM”

MiNiMizey ;, W.W+CZX ¢

= (W.Xj —I—b) y; > 1-¢ ,Vj &0
)

“slack variables”

= Slack penalty C > 0:

= » C=00 = have to separate the data!
* C=0 - ignores the data entirely!
» Select using cross-validation

For each data point:
If margin = 1, don’t care
If margin < 1, pay linear penalty



Equivalent formulation using hinge loss

MiNiMIZey ;, W.W+CX &
(W.Xj -+ b) Y > 1] - ij , V9 &0

Substituting &; = max (0,1 — (w - x; +b)y;) into the objective, we get:

min ||w]|? —I—CZmaX(O,l —(w-z; +b)y;)
J

The hinge loss is defined as /hinge(y, ¥) = max (O, 1— g)y)

. 2
min [jwlf3 + szhinge(yja w - +0)

/‘ J
This is called regularization; This part is empirical risk minimization,
used to prevent overfitting! using the hinge loss




What if the data is not linearly

separable?

Use features of features
of features of features....
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(1)

Feature space can get really large really quickly!




Linear separator in the feature ¢-space

[Tommi Jaakkola]



What's Next!

* Learn one of the most interesting and
exciting recent advancements in machine
learning

— Key idea #3: the “kernel trick”

— High dimensional feature spaces at no extra
cost

« But first, a detour
— Constrained optimization!



Constrained optimization

No Constraint X = -1

x*=0 x*=0
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How do we solve with constraints?
- Lagrange Multipliers!!!



Lagrange multipliers — Dual variables

\ — ] min.; 562 Add Lagrange multiplier
1\ /| Rewrite
\ —>/ | s.T. x Z b Constraint
\ / Introduce Lagrangian (objective):
| \ B L(z,a) = 22 — alx — b)

We will solve:

Why is this equivalent?

* min is fighting max! Ming MaXq L(ﬂ% 04)
X<b = (x-b)<0 = max - o (x-b) = st. a>0
* min won't let this happen! ~
PP \ Add new
x>b, @20 > (x-b)>0 > max - & (x-b) =0, a*=0 constraint

« minis cool with 0, and L(x, a )=x?(original objective)

x=b 2 « can be anything, and L(x, & )=x2 (original objective)

The min on the outside forces max to behave, so constraints will be satisfied.




Dual SVM derivation (1) — the linearly
separable case (hard margin SVM)

Original optimization problem:

minimizey, %w.w

Rewrite One Lagrange multiplier
constraints per example

Lagrangian:

L(w,a) = %W.W — > Q; {(W.Xj + b) Y — 1}
Ozj Z O, \V/]

Our goal now is to solve: min max L(w, Q)
w,b a>0



Dual SVM derivation (2) — the linearly
separable case (hard margin SVM)

(Primal) W0 WAX 3 ‘HwHQ ZO‘J (@ - %5 +b)y; — 1]

Swap min and max

(Dual) mg%c rgm _||wH _ZO‘J w-Z;+b)y; — 1

Slater’s condition from convex optimization guarantees that
these two optimization problems are equivalent!




Dual SVM derivation (3) — the linearly
separable case (hard margin SVM)

N S Lo
(Dual) ~ max min 5 lll] —Z%‘ (@ - @5 +b)y; — 1]
J

Can solve for optimal w, b as function of «:
oL
B —w — Z QYT 4 — W — Z A5Y5X4
J J
= oy, 2 D ay =0
J J
Substituting these values back in (and simplifying), we obtain:

(Dual) 450 X D%~ Z‘yiyjaiaj‘(?i‘sz

;o
iYj j 1,7 Y \ v\

Sums over all training examples  scalars  dot product




Dual formulation only depends on
dot-products of the features!

aJyJ—O

First, we introduce a feature mapping:
XiXj 2 d(x;) - P(x5)
Next, replace the dot product with an equivalent kernel function:
. 1
MaXiMmiliZey Zz Q; — 5 Zz,] aiajyiyjK(Xia X])
K(x,%x5) = ®(x;) - P(x;)
>0y =0



SVM with kernels

maximizea Y a; — 5 Y s oYy K (i, %)
K(x;,x5) = P(x;) - P(x5)

> iy =0
CZO(Z'>O

* Never compute features explicitly!!!
— Compute dot products in closed form Predict with:

y < sign lz oy K(x;,z) +b

1

« O(n?) time in size of dataset to
compute objective
— much work on speeding up




Common kernels

Polynomials of degree exactly d
K(u,v) = (u-v)?

Polynomials of degree up to d
K(u,v) = (u-v+1)¢

Gaussian kernels

= o2
K (@, 7) = exp (-”“ ””2>

202

Sigmoid
K(u,v) =tanh(pu-v +vr)

And many others: very active area of research!



Quadratic kernel

Linear separator in the feature ¢-space

[Tommi Jaakkola]



Quadratic kernel

j=1 (=1

= ZZZB —|—2ch
g=1 /=1

= Z(aﬁ(j)a:(g) +Z \ﬁx \ﬁz ) +
j.0=1

Feature mapping given by:
B(x) = [z12 0@ 282 ) \/oe® ae®

[Cynthia Rudin]



